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Abstract

Different multi-model ensemble (MME) methods were investigated for their

potential to improve the skill of 1-month lead seasonal forecast products, based

on six models from Global Producing Centers (GPCs) for long-range forecasts

(LRFs) designated by the World Meteorological Organization (WMO). We first

compared the hindcast performance of seven MME methods (simple compos-

ite method, SCM; simple linear regression, SLR; multiple linear regression,

MLR; best selection anomaly, BSA; multilayer perceptron, MLP; radial basis

function, RBF; genetic algorithm, GA) for the global 2-m temperature and pre-

cipitation for 1983–2009. The reference datasets for 2-m temperature and pre-

cipitation are the ERA-Interim from European Centre for Medium-Range

Weather Forecasts (ECMWF) and Global Precipitation Climatology Project

(GPCP) for hindcast verification. For real-time verification, the data from the

National Centers for Environmental Prediction/National Center for Atmo-

spheric Research (NCEP/NCAR) reanalysis 1 for 2-m temperature and climate

anomaly monitoring system and outgoing longwave radiation precipitation

index (CAMS OPI) for precipitation are used. According to our analysis, GA

was the most successful MME method in predicting both the global 2-m tem-

perature and precipitation for all four seasons. GA also showed good perfor-

mance in predicting the 2-m temperature and precipitation over the

13 regional climate outlook forum (RCOF) regions in all four seasons, but the

range in performance among the RCOF regions varied significantly. In a real-

time forecast period (MAM 2012-DJF 2015/16), GA outperformed in terms of

time-averaged anomaly pattern correlation coefficient (ACC) and root-mean-

square error (RMSE) of the 2-m temperature, although the forecast skill differ-

ence (0.02) between GA and SCM was not statistically significant. For the pre-

cipitation, both SCM and GA also reveal better performance than other MME

methods. During the very strong El Niño event in 2015, individual models

show better performance than other years. Nonetheless, these two MME

methods outperform all the individual models.
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1 | INTRODUCTION

Dynamical predictions on a seasonal timescale, which are
based on modelling the physical processes in the atmo-
sphere, ocean, cryosphere, and land surface, are a viable
tool for anticipating the near-time evolution of the climate
system. However, the skill of dynamical seasonal predic-
tions has remained limited, partially because of systematic
errors in models arising from factors such as model param-
eterization schemes (Zadra et al., 2018), and the model's
inability to produce an atmospheric response to oceanic
boundary conditions (Kang et al., 2004; Park et al., 2018).

Over the last two decades, multi-model ensemble
(MME) approaches that combine forecasts from different
climate models have been introduced to reduce the influ-
ence of errors associated with model biases (e.g.,
Krishnamurti et al., 1999, 2000; Shukla et al., 2000; Peng
et al., 2002; Palmer et al., 2004; Hagedorn et al., 2005;
Wang et al., 2009; Mishra et al., 2019). The equal-weighed
MME method generally shows consistently better predic-
tion skill each individual model does because the errors
from individual models tend to offset each other (Kharin
and Zwiers, 2002; Peng et al., 2002; Hagedorn et al., 2005;
DelSole, 2007). This is particularly important in long-
term forecasts because errors in the model are gradually
accumulated and increased. Meanwhile, unequal-
weighted MME forecasts that give more weights to the
models with consistently better performance have also
been suggested (Krishnamurti et al., 2000; Yun and
Krishnamurti, 2002; Ahn and Lee, 2016; Mishra
et al., 2019). Many operational centres for seasonal pre-
diction have now adopted the MME approach to provide
more reliable forecasts to users (Palmer et al., 2004; Kir-
tman et al., 2014; Min et al., 2014, 2017; Sohn et al., 2016;
Kim et al., 2016). Recent MME studies have expanded its
scope to study extreme weather conditions such as
droughts, typhoons, monsoons and heat waves using sea-
sonal forecast data (Sohn et al., 2011; Sohn and
Tam, 2016; Kim et al., 2017; Kim, 2018; Kim and
Chan, 2018; Park et al., 2018; Shin and Moon, 2018).

The World Meteorological Organization Lead Center
for Long-Range Forecast MME (WMO LC-LRFMME),
established in 2009 and jointly operated by the Korea
Meteorological Administration (KMA) and the National
Oceanic and Atmospheric Administration (NOAA)/NCEP,
provides a conduit for sharing model forecasts from global
producing centres (GPCs) for long-range forecasts (LRFs).

The LC-LRFMME was initiated to provide a well-
calibrated MME system and a “one-stop shop” for GPC
information (Graham et al., 2011; Kim et al., 2016). The
WMO LC-LRFMME issues global probabilistic and deter-
ministic seasonal forecasts that are openly available via its
website (https://www.wmolc.org/).

In this study, we evaluate the methods for creating
deterministic forecasts, that is, forecasts of the MME
anomalies, by combining forecasts from GPC-LRFs. The
study results are important for improving probabilistic
forecasts, as well. The WMO LC-LRFMME provides the
probabilistic forecasts using the probabilistic MME
method developed by Min et al. (2009) and currently
implemented at the APEC Climate Center (APCC). In this
method, predicted probabilities are approximated with a
Gaussian probability distribution function (PDF). The first
parameter of the predicted Gaussian PDF, the mean, can
be improved based on the results from this study, while
the second parameter, the variance, can be assessed by
accounting for both ensemble spread and calibration error
as has been demonstrated for Korea by Min et al. (2011)
and for Northern Eurasia by Kryzhov (2012).

Besides WMO LC-LRFMME, various deterministic
MME methods are used operationally in several opera-
tional centres, particularly APCC, Copernicus Climate
Change Services (C3S), and North American MME
(NMME). Since its establishment in 2005, APCC has
issued monthly 3-month global predictions of the 2-m
temperature and precipitation. APCC uses four determin-
istic MME methods (simple composite mean, SCM; step-
wise pattern projection method, SPM; multiple linear
regression, MLR; synthetic superensemble method, SSE)
for combining the ensemble means of participating
models that are operationally exploited for seasonal fore-
casts using three Atmospheric General Circulation
Models (AGCMs) and 10 Coupled General Circulation
Models (CGCMs) from leading climate forecasting cen-
tres and institutes in 10 countries (Kryjov et al., 2006; Kir-
tman et al., 2014). C3S was implemented by the
European Center for Medium-Range Weather Forecasts
(ECMWF) as part of the delegation agreement with the
European Union and publishes seasonal forecast prod-
ucts every month. Current participating centres in C3S
are ECMWF, The Met Office, Météo-France, the German
Meteorological Service (Deutscher Wetterdienst, DWD),
and the Euro-Mediterranean Center on Climate Change
(Centro Euro-Mediterraneo sui Cambiamenti Climatici,
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CMCC). Simple-averaged MME with equal weighting is
used with a correction for bias and variance estimated
from the full set of hindcasts available for each model,
which is called the “standard bias correction technique”
(Stockdale, 2012). NMME is a real-time experimental
operational forecast system consisting of coupled models
from North American modelling centres, including
NOAA/NCEP, NOAA/Geophysical Fluid Dynamics Lab-
oratory (GFDL), International Research Institute for Cli-
mate and Society (IRI), National Center for Atmospheric
Research (NCAR), National Aeronautics and Space
Administration (NASA), and Canadian Meteorological
Center (CMC), starting in August 2011. Among other
methods, NMME also uses simple-averaged MME with
anomaly forecasts for each model based on the climatol-
ogy from the hindcasts (Kirtman et al., 2014).

WMO LC-LRFMME provides four deterministic
MME predictions (SCM; regular multiple regression,
MLR; singular value decomposition, SVD; genetic algo-
rithm, GA) for a 1-month lead seasonal forecast provided
by 13 WMO-designated GPCs (Kim et al., 2016). Several
years have passed since WMO LC-LRFMME started pro-
viding MME forecasts; nevertheless, the skill of MME
methods using GPCs of WMO LC-LRFMME has not been
assessed in an operational context.

Although many MME techniques for seasonal pre-
diction have been developed for research and/or opera-
tional purposes, the MME techniques were evaluated
individually, sporadically and in isolation. The purpose
of this study is to assess an overall performance of the
several MME methods using the world's leading models
for seasonal forecasting. We first introduce the various
deterministic MME methods. Next, we assess the gen-
eral performance of different MME predictions with the

bias-corrected ensemble mean forecast worldwide and
then highlight the MME method with the highest pre-
diction skill in the hindcast period. We also examine the
performance of the selected MME over 13 regional cli-
mate outlook forum (RCOF) regions for the hindcast
period. Finally, we apply the MME method to real-time
forecasting and present the prediction skills of
the MME.

2 | DATA AND METHOD

2.1 | Data and verification metrics

The MME predictions using six models from five GPCs
participating in WMO LC-LRFMME are used (Table 1).
The other GPC hindcast data of which the periods are
not long enough (e.g., ECMWF and Toulouse) or do not
match others (e.g., Beijing, CPTEC, Exeter, Pretoria,
Seoul, and Offenbach) are not included in the analysis.
Moscow is the only uncoupled model, while the others
are coupled models (Melbourne, Montreal [CANCM3
and CANCM4], Tokyo, and Washington). The hindcasts
cover the 27 years from 1983 to 2009, and their real-time
forecasts from 2012 to 2015 (12 independent predictions)
are analysed. The 1-month lead retrospective and real-
time MME forecasts for the seasons of March–April–May
(MAM) initialized on February, June–July–August (JJA)
initialized on May, September–October–December (SON)
initialized on August, and December–January–February
(DJF) initialized on November are evaluated. All predic-
tion skills are focused on the 2-m temperature and pre-
cipitation. The datasets are interpolated into a grid with a
resolution of 2.5� in both longitude and latitude. The

TABLE 1 WMO GPCs whose predictions are used in this study with summarized information for the forecast system configurations

GPC name (model) Organization

Resolution
(atmospheric
component)

Hindcast
period

System configuration
(ensemble size of
hindcast)

Melbourne (POAMA
M2.4)

Australian Bureau of Meteorology T47/L17 1980–2010 Coupled (99)

Montreal (MSC
CANCM3)

Meteorological Service of Canada T63 1981–2010 Coupled (10)

Montreal (MSC
CANCM4)

Meteorological Service of Canada T63 1981–2010 Coupled (10)

Moscow (SL-AV) Hydrometeorological Centre of Russia 1.125� × 1.40625�/
L28

1981–2010 Uncoupled (10)

Tokyo (JMA/MRI-
CPS2)

Japan Meteorological Agency 1.875� × 1.875�/
L40

1979–2014 Coupled (10)

Washington (NCEP
CFSv2)

National Centers for Environmental
Prediction

T126/L64 1983–2009 Coupled (20)

Note: More details are available at WMO LC-LRFMME website (www.wmolc.org).
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anomalies are calculated as departures from the climatol-
ogy of each model over the training period in the leave-
one-out cross-validation scheme to provide comparable
results (Wilks, 1995). All of the non-equal-weights combi-
nation methods are calculated in the leave-one-out cross-
validation mode.

Following official recommendations of the WMO
Joint CBS-CCl Expert Team on Operational Predictions
from Sub-seasonal to Longer-time Scales (ET-OPSLS)
adopted at the meeting held on 11–15 April 2016 in Bei-
jing, China, we use different datasets for hindcast and
real-time forecast verification. The data used for verifica-
tion of the retrospective forecast are 2-m temperature
from the ERA-Interim reanalysis (Dee et al., 2011) of
European Centre for Medium-Range Weather Forecasts
(ECMWF) and precipitation from the Global Precipita-
tion Climatology Project (GPCP) merging data from rain
gauge stations, satellites, and sounding observation
(Adler et al., 2003). Verification of the real-time forecasts
was performed on the near real-time 2-m temperature
from NCEP/NCAR reanalysis 1 (Kalnay et al., 1996)
which is a joint product from NCEP and NCAR and pre-
cipitation from Climate Anomaly Monitoring System and
Outgoing longwave radiation Precipitation Index (CAMS
OPI) merging observation from rain gauges with satellite
estimates to obtain the quasi real-time monthly mean
global precipitation dataset (Janowiak and Xie, 1999).
The anomalies from observation are also leave-one-out
cross-validated data (e.g., WMO, 2010; Lee et al., 2011,
2013a; Min et al., 2014, 2017; Mishra et al., 2019). The
Niño 3.4 index based on optimum interpolation
(OI) version 2 monthly mean sea surface temperature
(SST) (Reynolds et al., 2002) obtained from the National
Oceanographic and Atmospheric Administration
(NOAA)/Climate Diagnostics Center (CPC) (available at
https://www.cpc.ncep.noaa.gov/data/indices/) is used to
present the relationship between forecast skill and El
Niño-Southern Oscillation (ENSO) variability. OISST ver-
sion 2 was the officially suggested dataset for verifying
sea surface temperature at the meeting of CBS for Expert
Team on Develop a Verification System for Long-range
Forecasts held on 16–20 August 1999 in Reading, United
Kingdom (the final report is available at: https://www.
wmo.int/pages/prog/www/DPS/Reports/ET-LRF-DevVS_
ecmwf1999.html).

The seasonal forecast skill of the various MME
methods is assessed using the SD, the temporal correla-
tion coefficient (TCC), the anomaly pattern correlation
coefficient (ACC), and the root-mean-square error
(RMSE). The SD, TCC, and RMSE are calculated for each
grid point and then globally averaged. We also estimate
the time-averaged ACC and RMSE worldwide. The scores
are defined as follows:

TCCj=

PN
i=1F

0
jO

0
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i=1F
02
j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1O

02
j

q ð1Þ
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q

θjF 0
j
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j=1cosθjO
02
i

q ð2Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1 Fj−Oj
� �2
n

s
ð3Þ

where N is the number of years of hindcast period, n is
the number of grids, F and O denote forecast and obser-
vation and F0 and O0 are the anomaly for forecast and
observation, respectively. j denotes each grid point.

According to the agreements on the need to have a
more coherent approach to verification of long-range
forecast, the Standard Verification System (SVS) for LRF
(SVS-LRF) has arranged the procedures for the practical
details of producing and exchanging appropriate verifica-
tion scores (WMO, 2010). The mean square skill score
(MSSS) is recommended by SVS-LRF for deterministic
verification. The MSSS is based on the mean squared
error (MSE) between a set of paired hindcast (MSEj) and
observations (MSEcj).

MSSSj=
MSEcj−MSEj

MSEcj
=1−

MSEj

MSEcj
ð4Þ

MSEj=
1
N

XN
i=1

Fij−Oij
� �2 ð5Þ
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N
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� �2 1
N

XN
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� �2 ð6Þ

The overall MSSS is computed as below:

MSSS=1−
Pn

j=1cosθjMSEjPn
j=1cosθjMSEcj

ð7Þ

MSSS can be expanded (Murphy, 1998) as.

MSSSj= 2
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SOj

 !2

−
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where rFOj is the product moment correlation of the fore-
casts and observations at point j as

rFOj =
1
N

PN
i=1 F− �Fj
� �

Oij− �Oj
� �

SFjSOj
ð9Þ

Here, SFj and SOj are the SD of forecast and observa-
tion, respectively. The first three terms of the decomposi-
tion of MSSSj are related to phase errors (through the
correlation), amplitude errors (through the ratio of the
forecast to observed variances) and overall bias error,
respectively, of the forecast. These values can be helped
to adjust or weight the forecasts used as inputs to
regional and local forecasts Good model performance
with strong correlation and small amplitude error can be
considered suitable for use in prediction.

2.2 | MME prediction methods

We suggest seven experimental deterministic MME
methods to merge the six seasonal forecast systems. Each
method is described below and summarized in Table 1.

2.2.1 | Simple composite method (SCM)

SCM is the simplest and most commonly used way to
combine the bias-corrected seasonal forecast with equal
weights (see Equation (10)), where F 0

i is the forecast
anomaly of the ith model, and N is the number of indi-
vidual models involved in MME. SCM is widely used in
many projects or operational centres (e.g., APCC, DEME-
TER, NMME, WMO LC-LRFMME), as recommended by
WMO (Palmer et al., 2004; WMO, 2007, 2008; Kirtman
et al., 2014; Kim et al., 2016; Min et al., 2017).

MME=
1
N

XN
i=1

F
0
i ð10Þ

2.2.2 | Linear regression methods

This approach uses empirically weighted MME with coef-
ficients calculated for simple linear regression (SLR) and
MLR. SLR is given by Equation (11), where ai is the
regression coefficient of the ith model.

MME=
1
N

XN
i=1

aiF
0
i ð11Þ

MLR is built using covariance matrices to minimize
the mean-square error during the training period and is
calculated by

MME=
XN
i=1

biF
0
i ð12Þ

where bi is the MLR coefficient of the ith model, which is
obtained by minimizing the difference between the indi-
vidual models and observations (Krishnamurti
et al., 1999, 2000; Yun et al., 2003; Ke et al., 2009).

2.2.3 | The best selection anomaly (BSA)
method

The best selection anomaly (BSA) method is a linear
method to merge models. This method takes the fore-
casted anomaly of the ith model Fzij− �Fij

� �
, which has

the highest correlation with observations among the indi-
vidual models for the jth point in the cross-validation
process (KMA, 2009a, 2009b).

MMEj=F 0
ij ð13Þ

2.2.4 | Artificial neural network (ANN)
method

The artificial neural network (ANN) is a nonlinear MME
prediction method that is used for nonlinear regression
and its classification problems. Previous studies demon-
strate that the seasonal prediction estimated by ANN out-
performs that of each participating model, and that it is
more advantageous than MLR in its ability to extract use-
ful information in the case of nonlinear cause–effect rela-
tionships (Yun and Krishnamurti, 2002; Park et al., 2005;
Ahn et al., 2012). ANN consists of three types of layer:
input, hidden, and output. The forecast data are entered
into the input layer, and the MME results are generated
from the output layer. There is more than one hidden
layer between the input and output layers (see figure 6 in
Yun and Krishnamurti, 2002).

We choose the multilayer perceptron (MLP) algo-
rithm, which is the most widely used algorithm to calcu-
late optimal weighting (Marius-Constantin et al., 2009).
The jth neuron in the hidden layer is assigned the
value, yj,
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yj= tanh
XN
i

wijxi+cj
� � ð14Þ

where N is the number of hidden neurons, wij and cj are
the weighting and bias parameters, respectively, and xi is
the forecast data normalized by four times the SD of
observation σ in the training period from the input layer,
as the input range is from −1.0 to 1.0. This output from
the jth neuron (yj) is entered into the output layer as
follows:

Z=
XH
j

~wjyj+~c
	 


ð15Þ

where H is the number of output neurons, and ~wj and ~c
are the weighting and bias from the hidden layer to the
output layer, respectively. This process is repeated to
minimize the cost function, J,

J=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t=1

Zt−Otð Þ2
vuut ð16Þ

where Ot is the observation from time step t, and T is the
training period. The final forecast data from ANN using
the MLP method are given by

MME=z×4σ ð17Þ

where σ is the observation SD in the training period
(Park et al., 2005).

In addition, we use the radial basis function (RBF),
which has the same structure as MLP. In the process
from the input to the hidden layer of RBF, the jth neuron
in the hidden layer is derived by.

yj=exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−μj

	 
2r
2σ2j

0
BB@

1
CCA ð18Þ

where μj and σj are the mean and SD of each neuron,
respectively. The final output of RBF is also calculated as
Equation (8) (Lee et al., 2008).

2.2.5 | Genetic algorithm (GA) method

The concept of GA was initially designed by Hol-
land (1975) as a probabilistic technique that explores the
optimum solution to a given problem that maximizes or

minimizes a particular function by algorithmizing the
process of developing and producing the next generation
to preserve and survive their genes in an environment of
survival of the fittest. GA is applied to MME to find the
optimal weight among the models during the training
period. Randomly generated initial weights of single
models are calculated in the first step of GA by using the
hindcast data of each model except the target year. These
weights are evaluated by a fitness function to check
whether they are optimal or not. If the weight does not
provide the optimal solution, the algorithm continues to
the next generation through operators such as crossover,
mutation, and replacement until an optimal solution is
obtained (Henao, 2011). Here, the minimum RMSE
between observation and model anomalies is used as the
fitness function (Lee et al., 2006; You et al., 2012; Ahn
and Lee, 2016). Ahn and Lee (2016) showed that the
MME method applying GA to both single-model and
MME improved the performance for both winter temper-
ature and precipitation, even over higher-latitude land
areas, compared to conventional SCM. This improvement
over land seems to be attributable to GA's greater effi-
ciency in finding an optimum solution in a complex
region where nonlinear physical properties are evident.
Ratnam et al. (2019) also revealed an improvement in
seasonal forecast of the 2-m temperature by applying GA
over several regions of South America, North America,
Australia and Russia compared to the unweighted
ensemble mean.

3 | COMPARISON OF MM2E
PREDICTION METHODS

We first show the general characteristics and perfor-
mance of the various deterministic MME methods using
the 27 years of hindcasts for 1983–2009. There are four
linear (SCM, SLR, MLR, and BSA) and three nonlinear
(MLP, RBF, and GA) MME methods.

3.1 | Annual variation of MME
prediction methods

Figure 1 shows the annual mean of SDs of the seasonal
2-m temperature in observation and seven MME predic-
tions, together with the observational annual climatology
pattern. The annual mean SD of each MME prediction is
calculated by averaging the SD of 1-month lead predic-
tions for each season. The temporal variability in obser-
vation over the land tends to be much larger than that
over the ocean due to the larger thermal inertia of the
oceans because of the different surface and atmospheric

6 KIM ET AL.



feedbacks that occur over the land compared with the
ocean (Stouffer et al., 1994; Bell et al., 2000).

The variability in the model is calculated based on
the ensemble mean, and the noise is averaged out; hence,
the variability in the ensemble mean is generally smaller
than the observed one. Nevertheless, most MME methods
represent a contrast of the temporal variability between
land and ocean shown in the observation, particularly
using the MLP and MLR methods which are highly cor-
related to the observation (spatial ACCs equal 0.85 and
0.83, correspondingly). There are differences in variability
among the MME predictions, most of which are found
over land rather than over the ocean because for a
1-month lead, the SST prediction skill for all models is
generally high; thus, the differences among the various
models are small over the ocean except SLR and RBF.
The variability in MME predictions in the equatorial east-
ern Pacific is relatively higher than that in other regions.
Previous studies have shown that most of the interannual
variability in the skill of seasonal predictions is affected
by oceanic boundary conditions, particularly those asso-
ciated with the ENSO (Wang et al., 2009; Barnston
et al., 2010; Min et al., 2014). The variability associated
with oceanic conditions, such as ENSO, is retained in the

MME predictions, leading to a higher variability in the
equatorial eastern Pacific.

For precipitation, the largest variability in the observed
precipitation spans the tropical region. A similar tendency
is found in the MME predictions but with a smaller ampli-
tude (Figure 2) because of ensemble averaging. The results
from Figures 1 and 2 reveal that the MME predictions cap-
ture the spatial patterns of the observed variability over
the ocean quite well, but that the amplitudes of variations
from the MME predictions are smaller than those of the
observations for both the temperature and precipitation.

3.2 | Interannual and seasonal variation
of MME prediction skill

Figures 3 and 4 show the temporal evolution of the fore-
cast skill of MME seasonal predictions for MAM, JJA,
SON, and DJF of the 2-m temperature and precipitation,
respectively, in terms of ACC during the 27-year period.
All of metrics are calculated, including ocean and land.
The forecast skill for both variables of MME predictions
is related to the ENSO phases (Wang et al., 2009; Bar-
nston et al., 2010; Min et al., 2014).

FIGURE 1 Annual SD (shading) of 2-m temperature of (a) observation, (b) SCM, (c) SLR, (d) MLR, (e) BSA, (f) MLP, (g) RBF, and

(h) GA for the period of 1983–2009. The contour line indicates the annual climatology of observation for the same period. The unit of

climatology for 2-m temperature is �C. The number in the top right corner of each plot shows the mean SD over the globe. The pattern

correlations between the observation and MME prediction are also given in brackets [Colour figure can be viewed at wileyonlinelibrary.com]
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During the strong 1997/98 El Niño event, the spread
of forecast skill among MMEs for precipitation for the
decaying phase (MAM 1998) is narrower than that for
the maturing phase (DJF 1997), which means that the
forecast skills of MMEs are relatively certain after the
ENSO events. Previous studies reveal that the atmo-
spheric response associated with the ENSO is lagged by a
few months, not only in observation but also in climate
models (Trenberth and Paolino, 1981; Trenberth
et al., 1998; Kumar and Hoerling, 2003; Buli�c and
Kucharski, 2012). This may be due to the delayed atmo-
spheric response to the ENSO, in that the oceanic bound-
ary conditions initialized from late January to February
(mature phase of El Niño) and used for seasonal predic-
tion for spring, lead to a larger atmospheric response in
spring (Kumar and Hoerling, 2003) and a higher forecast
skill, regardless of the MME method. The averaged MME
forecast performances of both variables during the ENSO
events are always better than those during non-ENSO
events for all four seasons. Especially, the ACC differ-
ences between the ENSO and non-ENSO precipitation
events for JJA and DJF are statistically significant at the
5% significance level. The variability in performance
among the MME predictions is consistent regardless of
the ENSO events (as shown in Figure S13). Although the

ENSO is an important of predictability, the forecast skills
of the MME predictions do still vary for both variables.
For example, for all seasons GA tends to outperform the
other MME methods for both the 2-m temperature and
precipitation in terms of not only ACC but also MSSS
(Figures 3, 4, and S1–S4). Other oceanic forcing such as
El Niño Modoki (Ashok et al., 2007) and Indian Ocean
Dipole (Saji et al., 1999) also have an improving effect on
MME prediction performance (Figures S14 and S15), but
their impacts are lower than the ENSO.

The global averaged TCCs of the MME predictions
for the 2-m temperature and precipitation are shown in
Figure 5a,b, together with the mean of single model
skills (MSMS), which is estimated as the average of the
skills of individual models. Generally, the skills of MME
predictions for the 2-m temperature are much higher
than those for precipitation, and the seasonal skill for
the 2-m temperature does not vary greatly. Also, the dif-
ferences of forecast skills of MME among the seasons
are not large and do not show large seasonal depen-
dency. The MSMS for the 2-m temperature is also
largely better than that of precipitation. Most MME pre-
dictions show higher correlation than the corresponding
(based on TCC as a skill metric) MSMS for both the 2-m
temperature and precipitation during all four seasons.

FIGURE 2 Same as Figure 1 but for precipitation. The unit of climatology for precipitation is mm�day–1 [Colour figure can be viewed

at wileyonlinelibrary.com]
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However, the MLP method reveals lower correlations
than MSMS for both variables during all four seasons,
indicating that not all MME methods improve the skill
compared with MSMS.

Figure 6a,b show the global averaged RMSE for the
2-m temperature and precipitation, respectively. Gener-
ally, the forecast errors of MME are larger in boreal win-
ter than in boreal summer, because of higher variability
in winter in extratropical Northern Hemisphere land
regions, particularly for the 2-m temperature. The

forecast errors averaged over separate single model fore-
casts for the 2-m temperature are 0.81, 0.65, 0.79, and
1.01 during the MAM, JJA, SON, and DJF seasons,
respectively. Most MME predictions show lower RMSEs
than the corresponding (based on RMSE as a skill metric)
MSMSs do, except for MLP during MAM, SON, and DJF.
Similar to the 2-m temperature, the RMSEs of all MME
predictions for precipitation are smaller than the
corresponding MSMS, that is, the MME prediction tends
to reduce the forecast errors.

FIGURE 3 Time series of ACCs between observations and predictions of 2-m temperature by each MME method over the globe

(coloured lines with marker) and absolute value of Niño 3.4 index (black line) for (a) MAM, (b) JJA, (c) SON, and (d) DJF for the period

1983–2009. The average scores during the same period are also shown [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3 | Overall performance of the MME
prediction in the retrospective period

As shown in the Taylor diagram (Taylor, 2005) in Fig-
ure S16, the MME predictions mostly underestimate the
interannual variation of both the 2-m temperature and
precipitation for all four seasons worldwide. The TCC
and normalized SD for each MME prediction show very
low seasonal variation. Figure 7 is presented to compre-
hensively determine the 4-season-averaged TCC and
RMSE of each MME and individual model for the 2-m

temperature and precipitation. First, for the 2-m tempera-
ture, the skill and RMSE of the MME predictions gener-
ally have a linear relationship, as opposed to that of
single models. Second, the performance of MMEs is supe-
rior to that of the individual models (e.g., Min
et al., 2014; Kim et al., 2016). GA has good forecast per-
formance, similar to SCM, among all MMEs and individ-
ual models with the highest TCC (0.51), which is
significant at the 99% confidence level, and the lowest
RMSE (0.74). The worst is MLP, which has a TCC of 0.41
and RMSE of 0.80.

FIGURE 4 Same as Figure 3 but for precipitation [Colour figure can be viewed at wileyonlinelibrary.com]
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For precipitation, the TCC and RMSE do not show a
distinct linear relationship, but there is a clear difference
in performance among the MMEs and single models. GA
also exhibits good performance for precipitation with
TCC of 0.20 and RMSE of 0.52. MLP is also ranked as the
worst MME prediction for precipitation with poor fore-
cast skill (0.12) and large forecast error (0.55). The fore-
cast performance of GA is consistently comparable to
that of SCM, which is widely used in many operational
centres for each variable and each season.

The mean square skill score (MSSS) which is rec-
ommended by the WMO Standardize Verification System
(SVS) for LRFs can be decomposed as phase errors
(through the correlation between forecast and observa-
tion), amplitude errors (through the ratio of the forecast
to observed SDs) and overall bias error, respectively. If
the model or MME performance is good with a strong

correlation and small amplitude error, the forecast can be
considered suitable for use in forecasts. A good forecast is
achieved when the ratio of the forecasted to observed SDs
is close to one, overall bias through the difference
between the forecast and observation is near zero, and
the MSSS is close to one. Negative or zero MSSS values
indicate that deterministic forecasts are worse than or the
same as climatology forecast (WMO, 2010, 2018;
Setiawan et al., 2017). In terms of MSSS, GA outperforms
the other MMEs for the 2-m temperature in both boreal
summer and winter (as shown in Figures S1 and S2). The
correlation does not vary significantly among all MMEs
(Figures S5 and S6). However, the ratio of SDs for RBF is
close to zero worldwide (Figures S9 and S10). As a result,
the MSSS values of RBF are lower than those of the other
methods. For the precipitation, the skilful MSSS mainly
shows in the Maritime continent and equatorial Pacific

FIGURE 5 Global averaged temporal correlations between observations and predictions of (a) 2-m temperature and (b) precipitation

by each MME method and single-model's mean (SMM) for MAM, JJA, SON, and DJF for the period 1983–2009. Dashed lines indicate that

the estimated score is statistically significant at the 5% level using the one-tailed Student's t test [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 6 Global averaged RMSE of (a) 2-m temperature and (b) precipitation predictions of each MME method and single-model's

mean (SMM) for MAM, JJA, SON, and DJF for the same period [Colour figure can be viewed at wileyonlinelibrary.com]
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for both JJA and DJF seasons (Figures S3 and S4) for all
MMEs and it is related to the correlation. The large ratio
of the SDs causes MSSS to be negative, as clearly demon-
strated by BSA of the precipitation for the JJA and DJF
(Figures S11 and S12).

4 | PERFORMANCE OF THE GA
METHOD OVER RCOF REGIONS

As discussed above, the prediction skill of GA is almost
equal to that of SCM for the hindcast period worldwide.
As the performance of SCM over the RCOF regions was
already revealed in a previous study (Kim et al., 2016),
we investigate the forecast performance of the GA
method over the RCOF regions in this section.

RCOF regions have been designated by the WMO and
the corresponding domains are listed in Table 2. RCOF
produces consensus-based, user-relevant climate outlook
products in real-time to reduce climate-related risks and
support sustainable development for the region in ques-
tion (WMO, 2016). One of the primary sources of infor-
mation for the climate outlook of RCOF is the real-time
seasonal forecast produced by WMO LC-LRFMME.

Figure 8 shows the scatter diagram between TCC and
normalized RMSE (NRMSE) of the most reliable MME
prediction for the hindcast period, GA, for the 2-m tem-
perature and precipitation for each season, averaged over
the domain of each RCOF region. Here, we calculate the
NRMSE, which is obtained from the RMSE divided by

the SD of the observation, to compare the forecast errors
of the 2-m temperature and precipitation together. The
seasonality of the forecast performance over most RCOF
regions is not large for both 2-m temperature and precipi-
tation. The most consistent result is that the forecast
skills and RMSE for the 2-m temperature are better than
those for precipitation, showing a larger TCC. In addi-
tion, the forecast performance still varies based on region
or variable, even though the most reasonable MME pre-
diction method (i.e., GA) is used. In terms of MSSS as
well, GA performs better than the other methods in most
RCOF regions, especially for boreal winter 2 m tempera-
ture and precipitation (Figure S21). The forecast skills of
both the variables decrease toward the extratropical
RCOF regions. Previous studies have revealed that the
prediction skill for individual models is greater over the
tropics than the extratropics and greater over ocean than
land (Wang et al., 2009; Peng et al., 2011; Kim
et al., 2012; Lee et al., 2014; Ham et al., 2019). GA also
outperforms in tropical RCOF regions, such as
ASEANCOF, PICOF, and PRESAO, which are more
affected by the interannual variations under oceanic
boundary conditions, for example, ENSO (e.g.,
Ropelewski and Halpert, 1989; Mason and
Goddard, 2001; Jin et al., 2008). However, the skills over
extratropical RCOF regions, not affected or weakly
affected by the ENSO, remain relatively low (Alexander
et al., 2002; Palmer et al., 2004; Kryjov, 2012; Kumar
et al., 2013; Min et al., 2014). This conforms to results
from many previous studies that the skillful forecasts are

FIGURE 7 Diagram of temporal correlation-RMSE of each MME method of (a) 2-m temperature and (b) precipitation averaged over

four seasons (MAM, JJA, SON, and DJF). The red crosses indicate each individual model [Colour figure can be viewed at

wileyonlinelibrary.com]
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concentrated in the seasons and regions affected by the
ENSO (e.g., Ropelewski and Halpert, 1989; Mason and
Goddard, 2001; Jin et al., 2008) as well as in the
extratropical regions strongly related to the ENSO via
teleconnections during its peak phases (Wang et al., 2009;
Barnston et al., 2010).

5 | REAL-TIME FORECAST

Next, we investigate the seasonal predictability of differ-
ent MME systems for the 1-month lead seasonal 2-m
temperature and precipitation, using real-time forecasts
for the period during MAM 2012-DJF 2015/16. Figure 9

shows the real-time forecast skills of the two MME pre-
dictions (GA and SCM) for the real-time forecast period
and the spread of the skill of all MMEs for the 2-m tem-
perature and precipitation, in terms of ACCs. We focus
solely on these two MME methods because we previously
assessed GA as the most skilful MME method for the
hindcast period, and SCM is widely used in many opera-
tional centres. Overall, the real-time forecast skill for
both the 2-m temperature and precipitation increased in
recent years, as it was affected by the very strong El Niño
in 2015. As mentioned above for the hindcast period, the
real-time forecast skills of all MME methods are also
highly related to ENSO variability. The forecast skill
among all seven MMEs ranges from 0.35 to 0.63 for the
2-m temperature and from 0.77 to 0.82 for the precipita-
tion in DJF 2015. The forecast skills for GA and SCM are
not always better than those of the other MME predic-
tions for the period of real-time forecast; however, they
consistently show relatively higher performance, regard-
less of the season. The time-averaged ACCs of GA and
SCM are 0.43 and 0.42 (0.31 and 0.32) for the 2-m temper-
ature (precipitation). There are few skill differences
between GA and SCM in the real-time forecast period,
although GA consistently slightly outperforms other
MME methods for the hindcast period.

The forecast errors, in terms of RMSEs, of the 2-m tem-
perature for the same period are illustrated in Figure 10a.
The most notable feature is that the skill differences among
the MME methods during DJF are larger than those during
the other seasons. The RMSE of the MLP shows the
greatest seasonal variation, with a mean and SD of 1.44
and 0.56, respectively. The increased forecast error during
DJF may be due to the wider error spread of individual
models compared with that in the other seasons (figure not
shown). In general, the forecast error of both GA and SCM
is lower (with time-averaged RMSE of 0.94 for GA and 0.95
for SCM) than that of other MMEs, even in winter.
Figure 10b shows the forecast error for precipitation for the
real-time forecast period. Among the MME methods, the
time-averaged forecast error ranges from 0.80 to 1.09. The
forecast errors of GA and SCM with time-averaged RMSE
of 0.88 and 0.85, respectively, are relatively low among
those of the MME methods. However, SLR shows the low-
est error with a time-averaged RMSE of 0.80.

These two MME systems present lower errors than
those of the other MMEs in most cases, when the error
spreads of MMEs are quite large (e.g., precipitation for
SON 2013). The errors of the two MME predictions are not
largely different in the real-time forecast; the time aver-
aged RMSEs of GA and SCM are both 0.94 for the 2-m
temperature and 0.88 and 0.85 for precipitation, respec-
tively. Individual models show better performance during
the very strong El Niño event in 2015 than in other years.

TABLE 2 Domains of the RCOF regions (see figure 10 in Kim

et al., 2016)

RCOF Domain

GHACOF
(Greater Horn of Africa Climate Outlook
Forum)

22.5–50�E, 12.5S–
22.5�N

SARCOF
(Southern African Regional Climate
Outlook Forum)

10–50�E, 35�S–
7.5�N

PRESAO
(Climate Outlook Forum for West Africa)

17.5�W–27.5�E,
0–27.5�N

FOCRAII
(Forum on Regional Climate Monitoring,
Assessment and Prediction for Regional
Association II)

50–150�E, 10�S–
50�N

WCSACOF
(Western Coast of South America Climate
Outlook Forum)

80–57.5�W, 55�S–
12.5�N

SSACOF
(Southeast of South America Climate
Outlook Forum)

70–40�W, 40–20�S

PICOF
(Pacific Islands online Climate Outlook
Forum)

140�E–25�W,
25�S–5�N

CACOF
(Climate Outlook Forum for Central
America)

92.5–77.5�W,
5–17.5�N

SEECOF
(Southeastern Europe Climate Outlook
Forum)

10–40�E, 30–50�N

SASCOF
(South Asian Climate Outlook Forum)

60–100�E, 0–40�N

CARICOF
(Caribbean Climate Outlook Forum)

90–60�W,
10–30�N

NEACOF
(North Eurasian Climate Outlook Forum)

20–180�E,
40–70�N

ASEANCOF
(ASEAN Climate Outlook Forum)

90–140�E, 10�S–
30�N

KIM ET AL. 13



Nonetheless, both SCM and GA methods outperform all
the individual models. The strong El Niño events (1997/98
El Niño in the hindcast period and 2015 El Niño in the
real-time forecast period) certainly improve prediction per-
formance from the autumn of the El Niño year to the
spring of the following year (Figures S22 and S23).

6 | DISCUSSION AND SUMMARY

The MME methods have been developed and evaluated
individually, sporadically and in isolation, so it is

necessary to assess their overall performance comprehen-
sively and coherently. We evaluated the global skills of
MMEs for the hindcast period and suggested the most
reasonable MME method. For the assessed variables,
most MME predictions present reasonable skills in terms
of spatial patterns of annual variation and temporal evo-
lution for all four seasons for the 27-year hindcast
periods, particularly during the El Niño events. The
ENSO variability was one of the main sources of predict-
ability, not only in the individual models but also in the
MME prediction (Lee et al., 2011, 2013a, 2013b; Min
et al., 2014, 2017). The forecast skills and errors, in terms

FIGURE 8 Diagram of TCC-NRMSE of GA, which is selected as the most skilful MME method for the RCOF regions during (a) MAM,

(b) JJA, (c) SON, and (d) DJF mean 2-m temperature and precipitation for the period of 1983–2009. Dashed line indicates that the estimated

TCC is statistically significant at the 5% level using the one-tailed Student's t test [Colour figure can be viewed at wileyonlinelibrary.com]
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of global TCC and RMSE, of some MME methods were
poor compared with those of MSMS, and we take GA as
the most reasonable MME prediction method based on

performance. Even with the most reasonable MME fore-
casting method (i.e., GA), the forecast performance still
depends on the region or variable. In the real-time

FIGURE 9 Time series of ACC

between the observations and

predictions for 1-month lead seasonal

mean (a) 2-m temperature and

(b) precipitation for GA (red) and SCM

(blue) for the real-time period MAM

2012–DJF 2015/16 over the globe. The

grey shaded area shows the spread of

scores for all MME methods for the

same period [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 10 Time series of RMSE

between the observations and

predictions for 1-month lead seasonal

mean (a) 2-m temperature and

(b) precipitation for GA (red) and SCM

(blue) for the same real-time period over

the globe. The grey shaded area shows

the spread of scores for all MME

methods for the same period [Colour

figure can be viewed at

wileyonlinelibrary.com]
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forecast period, the two MME systems (GA and SCM)
reveal consistently higher skills and lower errors com-
pared to the other methods for the global 2-m tempera-
ture and precipitation.

The following study caveats should be noted. First,
the forecast skills vary depending on the region or vari-
able, even in the most skilful MME system. Also, the
forecast skill for precipitation remains poorer than that
for the 2-m temperature, even using various MME
methods. This is due to the complex physics of local-scale
precipitation, resulting in more noise and therefore
unpredictable characteristics (Gong et al., 2003; Min
et al., 2017). In addition, the forecast errors are quite
large in the extratropics for both the 2-m temperature
and precipitation. Second, the MME predictions out-
perform those by single models in both hindcast and
real-time forecast. The differences of forecast skills
between GA and SCM were not statistically significant,
but GA remains the most skilful MME prediction for the
2-m temperature in the real-time forecast.

The limited seasonal prediction skills of the MME
methods can be partially explained using the Empirical
Orthogonal Function (EOF) analysis. The first mode of
EOF of observation for the global 2-m temperature is
close to the global warming pattern, and the first princi-
pal component (PC1) is highly correlated (0.66) with the
global warming signal. This mode explains about 15.8%
of the total variance for 1983–2009 (Figures S17a and
S18a). The second EOF mode of observation for the
global 2-m temperature, which explains 13.8% of the vari-
ance, mainly shows the Arctic Oscillation (AO)-related
impact over the land in the Northern Hemisphere
(Kryzhov and Gorelits, 2015; He et al., 2017). The correla-
tion coefficient between PC2 and the AO index obtained
from CPC (available at http://www.cpc.ncep.noaa.gov/
products/precip/CWlink/daily_ao_index/ao_index.html)
is 0.52 (Figures S19a and S20a). The first EOF modes of
most MME methods except for RBF are related to global
warming. The second EOF mode of the MMEs (except
for RBF) is associated with the ENSO rather than with
the AO (Figures S19b–h and S20b–h).

Several studies have attributed the difficulty in
assessing MME methods to the small samples available
to calculate optimal weights (Kharin and Zwiers, 2002;
Kryjov et al., 2006; DelSole and Shukla, 2009; Rodrigues
et al., 2014; Min et al., 2017) and to overfitting during the
training period (Davis, 1978; Michaelsen, 1987; Min
et al., 2014). Nevertheless, it is relevant that we explore
the possibility of finding MME techniques other than
SCM for use in operational seasonal prediction. For
RCOF regions, it is also important to utilize an objective
MME approach instead of a consensus-based subjective
approach for developing seasonal forecasts. GA shows

good performance in the RCOF regions, especially in the
tropical RCOF regions, such as ASEANCOF, PICOF, and
PRESAO, which are directly affected by oceanic bound-
ary conditions (e.g., ENSO). As noted in the introduction,
the study results will be helpful to improve the seasonal
outlook for RCOF regions, in terms of both deterministic
and probabilistic predictions. Improved deterministic
forecast can be used as the mean of forecast PDF, and the
variance of forecast PDF can be assessed by accounting
for both ensemble spread and calibration error as
suggested by Min et al. (2011) and Kryzhov (2012).
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