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Improvement of CGCM prediction for wet season
precipitation over Maritime Continent using a bias

correction method
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ABSTRACT: A new model output statistics method – Ensemble Selective Simple Linear Regression (E-SSLR) – is devel-
oped based on SLR in order to increase the seasonal prediction skill of a Coupled General Circulation Model (CGCM) over
the Maritime Continent (MC), a region with large model simulation errors. E-SSLR is applied to Pusan National Univer-
sity (PNU) CGCM hindcast over the MC region for the period of 1981–2010 to reduce the systematic model bias in boreal
winter (DJF) seasonal mean precipitation and outgoing long-wave radiation (OLR) anomalies. Three oceanic indices (Nino
3.4, El Nino Modoki and Indian Ocean Dipole (IOD) Mode indices) and one atmospheric index (Southern Oscillation Index,
SOI) produced from PNU CGCM hindcast are used as SLR predictor. E-SSLR consists of three steps: Selection, SLR and
Ensemble. The selection and ensemble steps are added to the conventional SLR step to overcome the weakness of the linear
regression method. In the selection step, the grids with a temporal correlation coefficient between predictor and predictand
exceeding the threshold are selected. These grids (grid-selected) are corrected by SLR in the second step. For the grids that
are grid-not-selected, the original CGCM results are used without further correction. This prevents insignificant statistical
correction due to the application of low correlated predictors to the SLR. The correction effect of E-SSLR is analysed in terms
of deterministic and categorical analyses. The result shows that the seasonal predictability of DJF seasonal precipitation and
OLR in the MC region is increased by using E-SSLR, and this increment is statistically significant. The correction effect is
larger when indices with high predictability that are closely correlated with the predictand are used as predictors.
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1. Introduction

The Maritime Continent (MC), one of the world’s
regions of active convection and heavy precipitation, lies
between the tropical western Pacific and the eastern Indian
Ocean, so-called warm pool area. Extreme events such
as droughts, floods and typhoons are very frequent over
south-east Asian countries such as Indonesia, Malaysia,
Vietnam, Cambodia, Philippines and Papua New Guinea.
For example, during 2007 winter, Indonesia experienced
heavy flooding and recorded 112 casualties because of
continuous heavy rainfall. In 2011 fall, flooding due
to precipitation lasted almost 4 months caused over
1000 casualties and huge economic damage throughout
south-east Asia, including Thailand, Cambodia, Vietnam
and Philippines. On the contrary, severe drought led to
crop failure in 2005 and 2010, and huge forest fires in
Borneo Island and some parts of Indonesia and Malaysia
in 1997 and 1998. During these periods, enormous loss of
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forest and severe economic damage were suffered. Thus,
accurate long-term prediction in this MC is crucial to cope
with natural disasters.

This warm pool region plays an important role in global
circulation as rising branches of Hadley and Walker circu-
lations and Indian Ocean Dipole (IOD). The warmth of the
sea surface temperature (SST) in this area leads to a huge
amount of surface heat flux associated with active evap-
oration resulting in vigorous deep convection (Ramage,
1968). The precipitation induced by such active convec-
tion leads to a huge amount of latent heat release at the
middle of troposphere, which drives a rising motion that
affects the global-scale climate through Hadley and Walker
circulations and IOD. Ramage (1968) named this region
the ‘boiler box’ of the earth. Besides, the recent study of
Sun et al. (2009) found that the convection activity over
the region of the MC serves as a bridge linking the boreal
spring Antarctic Oscillation and the Yangtze River valley
summer rainfall. This implies that MC plays an important
role in interaction between the Southern–Northern Hemi-
spheres. In spite of its climatological importance, the Cou-
pled General Circulation Model (CGCM) has huge bias
over this region in precipitation (Neale and Slingo, 2003;
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Qian, 2008; Schiemann et al., 2014). Because of com-
plex orography and topography with over 3000 islands of
various size surrounded by shallow and narrow seas, pre-
diction and simulation of weather and climate over this
area with various scales of space and time are challenging
works.

Neale and Slingo (2003) insisted that systematic error
of General Circulation Model (GCM) in the MC eventu-
ally affects the simulation of general circulation as convec-
tion in this region strongly influences global-scale energy
and moisture budgets, thereby decreasing the GCM’s pre-
dictability in higher latitudes. Therefore, it is important to
increase the model predictability over the MC area not only
for this region but also for higher latitudes. The low pre-
dictability over this region results from model error or bias,
which can be divided into two parts: systematic bias and
non-systematic errors. The systematic bias can be further
subdivided into the mean and anomalous parts (Kug et al.,
2007; Jin et al., 2008; Wang et al., 2008; Ahn et al., 2012).
The systematic mean bias can be corrected relatively easily
by removing the difference in climatology between model
and observation. However, the anomalous bias is difficult
to correct because of its irregular pattern or trend.

Model output statistics (MOS; Glahn and Lowry, 1972;
Wilks, 1995) is a kind of statistical post-processing meth-
ods to improve the skill of model prediction. One of the
most common MOS methods is a simple linear regres-
sion (SLR) method. This method uses a linear rela-
tionship between the target variable and other variables,
including meteorological indices and patterns such as El
Nino/Southern Oscillation (ENSO), Arctic Oscillation and
Pacific-North America. Different kinds of MOS methods
use the pattern relationship between model and observa-
tion. These methods usually utilize singular value decom-
position and empirical orthogonal function analyses in
finding the patterns. Non-linear methods such as artifi-
cial neuron network and genetic algorithm are also used
for MOS.

In this study, SLR is used to reduce the anomalous bias
of seasonal hindcast results from a CGCM and increase
the long-term predictability of precipitation and outgo-
ing long-wave radiation (OLR) over the MC region in
the wet season. The precipitation and OLR represent the
local-scale and large-scale convective activities, respec-
tively. As for the predictors of the regression equation, the
large-scale tropical indices strongly affecting precipitation
and convection in the MC region are considered. Espe-
cially, Nino 3.4, El Nino Modoki and IOD Mode indices,
represented by equatorial SST, which has relatively good
predictability in most CGCMs, are chosen as predictors to
correct the precipitation bias over the region.

2. Data and Method

2.1. Data

This study uses hindcast results of the Pusan National
University (PNU) CGCM for the application of a sta-
tistical correction method to rainy season precipitation

over the MC area. The PNU CGCM is a participant
model of Asia-Pacific Economic Cooperation Climate
Center (APCC) multi-model ensemble long-range pre-
diction system (Sun and Ahn, 2011, 2014). This model
describes interactions between four subsystems: atmo-
sphere, land-surface, ocean and sea-ice. The atmospheric
component model of this CGCM is the National Center
for Atmospheric Research (NCAR) Community Climate
Model (CCM3; Hurrell et al., 1998) with a triangular trun-
cation at wavenumber 42 and 18 vertical levels. The Land
Surface Model is combined with atmospheric GCM. The
oceanic component model is Geophysical Fluid Dynam-
ics Laboratory Modular Ocean Model version 3 (MOM3;
Pacanowski and Griffies, 1999). For the sea ice, the elas-
tic viscous plastic sea-ice model (Los Alamos National
Laboratory) modified by Ahn and Lee (2001) is cou-
pled with the atmospheric and oceanic models. No flux
adjustment is applied in the experiment. The hindcast con-
sisted of five ensemble members using time-lag method.
In this study, a simply composited ensemble mean is used
for the statistical correction. The PNU CGCM prescribes
data-assimilated ocean initial condition using the varia-
tional method using filter (Huang, 2000). More detailed
explanation is presented by Sun and Ahn (2011, 2014) and
Ahn and Kim (2014). The CGCM hindcasts with October
initial condition 0–4 month lead time and seasonal mean
[lead2 (December)–lead4 (February), hereafter DJF] are
used to make predictors to correct for the MC wet season
precipitation and OLR. Boreal winter (DJF) is regarded
as the wet season of the MC region. In order to set an
SLR equation and validate the results, Global Precipitation
Climatology Project v2.2 (GPCP; Adler et al., 2003) pre-
cipitation and National Centers for Environmental predic-
tion (NCEP) and NCAR Reanalysis 2 (NCEP/NCAR R2;
Kanamitsu et al., 2002) OLR data are used. The horizontal
resolutions of the data are 2.5∘ × 2.5∘ in both longitudinal
and latitudinal directions.

2.2. Method

This study applies an Ensemble Selective Simple Linear
Regression (E-SSLR) method to the CGCM hindcast
for the 30-year period of 1980–2009. Since the sample
period is not long enough to be sub-divided into training
and validating periods, leave-one-out cross-validation
(Michaelsen, 1987; Barnston, 1994) is used by taking
29 years for the training period and 1 year for forecast.
At each forecast process (30 times), we apply three
steps – selection, SLR and ensemble – independently.
Figure 1 shows a flow chart of the SSLR method. First,
we set a threshold which is defined as a critical value
at the 90% confidence level in the temporal correlation
coefficient (TCC) between indices (predictor) and target
variable (predictand). After setting the threshold, we
select the grids with a TCC exceeding the threshold as
‘grid-selected’. After selection step, only ‘grid-selected’
are corrected by SLR in second step. For the grids that
are ‘grid-not-selected’, the original CGCM results are
used without further correction. The intention of selec-
tion step before SLR is to retain the predictability of
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Figure 1. Flow chart of SSLR.

the CGCM results, which are based on dynamics, when
the relationship between predictor and the predictand
is not prominent. The SLR correction equation for the
training and validation at the selected grids for each
cross-validation step i is given as follows.

Training ∶ yobs j = 𝛽i × indexCGCM j + 𝛼i

(i, j = 1 ∼ N, j ≠ i ) (1)

Forecast 1 ∶ yint i = 𝛽i × indexCGCM i + 𝛼i ( i = 1 ∼ N)
(2)

Forecast 2 ∶ ynew i = 𝛽i × AFi × indexCGCM i + 𝛼i

( i = 1 ∼ N) (3)

AFi = 𝜎obs i∕𝜎int i
( i = 1 ∼ N) (4)

N = 30 (years), and the 𝛽 i and 𝛼i are regression coef-
ficients that satisfy the least-square method. The standard
deviations, 𝜎int i and 𝜎obs i, are defined as

𝜎int i =

√√√√ 1
N − 1

N∑
j=1

(
yint j − yint i

)2 ( i, j = 1 ∼ N, j ≠ i)

(5)

𝜎obs i =

√√√√ 1
N − 1

N∑
j=1

(
yobs j − yobs i

)2 ( i, j = 1 ∼ N, j ≠ i)

(6)

In addition, the average of xi is calculated as:

xi =
1

N − 1

j=N∑
j=1

xj ( i, j = 1 ∼ N, j ≠ i) (7)

In the training equation (1), observation data are used
for the predictand variable. The independent variable is
index that is predicted by CGCM. Using the linear relation-
ship between the dependent and independent variables, the
regression coefficients 𝛽 i and 𝛼i are determined for each
target year, i. This means regression coefficients are differ-
ent for each validation year. After ‘training step’, we make
intermediate SLR result (yint i) for 30 years of precipita-
tion and OLR using Equation (2). The standard deviation
of yint i (𝜎int i) is calculated from 30 years of yint i with 𝛽 i
and 𝛼i of each target year i (Equation (5)). Also, 30 differ-
ent standard deviation of observation (𝜎obs i) are calculated
using leave-one-out data (6). Finally, the corrected value
for ith year (ynew i) is determined in Equation (3). Here, 𝛽 i
is multiplied by AFi which is ‘amplification factor’. This
AFi is the ratio of 𝜎obs i to 𝜎int i (Equation (4)). The role
of AFi is solving the problem in that the standard devia-
tion is decreased after statistical correction relative to the
observation which generally incurs. After SSLR with 18
predictor indices (Nino 3.4, EM and IODM indices with
different lead times), final correction result (E-SSLR) is
obtained using simple composite method (SCM) in step 3.

2.3. Experiment design

The prediction of MC precipitation is corrected using
E-SSLR, which utilizes CGCM-predicted indices as pre-
dictor. As the equatorial SST is relatively well simulated
compared with other variables, it has often been used as a
predictor for MOS methods or statistical models in many
studies (Barnston et al., 1996; Kug et al., 2008). PNU
CGCM also has good predictability in terms of equatorial
Pacific Ocean SST particularly in Nino 3.4 region (Jeong
and Ahn, 2007). Therefore, SST-based indices produced
by the CGCM are chosen as predictors of SLRs to correct
for hindcasted precipitation and OLR predictions. In this
study, the MC is defined as the area of 90–160∘E longi-
tudinally and 15∘S–15∘N latitudinally (Figure 2(a)). The
indices used in this study are Nino 3.4 index (Nino3.4I),
Southern Oscillation Index (SOI), El Nino Modoki Index
(EMI) and IOD Mode Index (IODMI), as shown in Table 1.
The target period for the prediction and correction is boreal
winter (DJF seasonal mean), which is the wet season in the
area (Figure 2(b)).

The convection and rainfall activity over the MC has
relatively good relationship with predictor indices during
the wet season. That is, in the year of El Nino, the MC
area has colder SST than normal, resulting in suppressed
convection and rainfall activity (Lau and Chan, 1983;
McBride et al., 2003; Chang et al., 2004). Therefore,
Nino 3.4I and SOI, which represent the ENSO phenom-
ena, are reasonable predictors for MC precipitation. EMI,
which represents a different kind of ENSO phase, is also
selected as a predictor. El Nino Modoki is a phenomenon
characterized by warm SST anomalies over the Central
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Figure 2. (a) MC region and (b) precipitation climatology over the area.

Pacific and cold over the western and eastern Pacific.
Another air–sea interaction that influences the target
region is IOD, introduced by Behera et al. (1999) and
Webster et al. (1999). IOD is a phenomenon with a seesaw
pattern of SST anomalies between the eastern and western
Indian Ocean. The negative phase of IOD brings warmer
SST condition around the eastern Indian Ocean, inducing
increased precipitation over MC, including Indonesia.
Thus, IODMI (Saji et al., 1999) is also taken into account
as a predictor for precipitation correction. SOI, the atmo-
spheric index, is selected as a predictor for comparison
with the oceanic index, Nino 3.4I.

Figures 3 and 4 show the TCCs between DJF seasonal
mean precipitation and OLR, and four kinds of indices
from October to February. The regions with confidence
level over 90% are shaded. Nino 3.4I and SOI for DJF
show high correlation coefficients with MC precipitation
and OLR. All the indices of DJF show negative correlation
with precipitation activity. This implies that the negative
phases of ENSO, IOD and El Nino Modoki lead warmer
SST condition around the MC region, inducing more
vigorous convection and precipitation. During October to

Table 1. Indices used for the correction of MC precipitation and
OLR.

Index Description

Nino 3.4I Area-averaged SSTA in 5∘–5∘N,
190∘–240∘E

EMI Area-averaged SSTA in A =165∘–220∘E,
10∘–10∘N B =250 –290∘E, 15∘–5∘N
C =125 –145∘E, 10∘–20∘N.
EMI=A – (0.5*B) – (0.5*c)

IODMI Area-averaged SSTA in A= 50 –70∘E,
10∘–10∘N B= 90 –110∘E, 10∘–10∘N.
IODMI=A–B

SOI mslp(Thaiti) – mslp(Darwin)

February, Nino 3.4I is negatively correlated with DJF pre-
cipitation. SOI shows the same result with Nino 3.4I but
with the opposite sign. These results are similar to those
by Chang et al. (2004). During October to February, EMI
also shows a negative relationship with DJF precipitation
over the limited area of the Philippines and center of the
MC Ocean. On the other hand, IODMI shows a 3- to
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Figure 3. TCC between observed precipitation and predictor indices.

5-month lagged correlation with a significant correlation
only in October–December. Figures 3 and 4 show that the
predictor indices are appropriate to correct precipitation
and OLR over the MC region.

The TCCs between the indices from the CGCM hind-
cast and observation are shown in Table 2 to illustrate
the ability of the CGCM to predict the predictor indices.
Nino 3.4I maintains the predictability from leads 0 to 4
with a TCC over 0.9. This indicates that PNU CGCM
can replicate the ENSO phenomenon closely. SOI and
IODMI show a decline in predictability with increasing
lead time. Nonetheless, predictability of all the monthly
indices as well as that of seasonal mean indices remains
significant with exception of lead4 of SOI and IODMI,
which means that those four indices can profitably be used
as predictor for SLR. Furthermore, Table 2 reveals that the
SST-based indices (Nino 3.4I, EMI and IODMI) are more
accurately produced than the atmospheric variable (mean
sea-level pressure)-based index (SOI), which suggests that
SST-based indices will improve the correction result. Each
of the 24 predictors from the four indices of the six lead

times is applied independently to the SSLR method intro-
duced in Section 2.2. To generate the E-SSLR result, we
apply SCM to the SSLR of the oceanic indices (Nino3.4I,
EMI and IODMI).

Section 3 presents the correction results according to
deterministic analysis and categorical deterministic anal-
ysis.

3. Results

3.1. Deterministic predictions of anomalies

The prediction skill of E-SSLR result is analysed by deter-
ministic analysis to investigate the improvement in the DJF
seasonal prediction of precipitation and OLR. Figure 5
shows TCC and root mean square error (RMSE) of the
hindcasted (Figure 5(a) and (c)) and corrected (Figure 5(b)
and (d)) precipitation. The shaded areas in Figure 5(a)
and (b) show statistically significant TCCs at the 95%
confidence level. The dotted area in Figure 5(b) represents
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Figure 4. TCC between observed OLR and predictor indices.

Table 2. The TCC between the indices of the CGCM hindcast with different lead times and observation.

Lead0
(October)

Lead1
(November)

Lead2
(December)

Lead3
(January)

Lead4
(February)

DJF

Nino 3.4I 0.96** 0.95** 0.93** 0.93** 0.89** 0.94**
EMI 0.93** 0.83** 0.70** 0.77** 0.73** 0.75**
IODMI 0.92** 0.88** 0.71** 0.47** 0.10 0.52**
SOI 0.82** 0.75** 0.79** 0.56** 0.09 0.63**

**: 99% confidence level.

grids with TCCs that are not significant at the 99% confi-
dence level in hindcast, but that become significant at the
99% confidence level after correction. The uncorrected
precipitation and OLR have TCCs that are not significant
at the 95% confidence level over the whole domain, except
the southern part of the Philippines and the narrow eastern
part of Papua New Guinea. RMSE is relatively higher
in areas of lower TCC than in other regions, especially
in Papua New Guinea and Borneo Island (Figure 5(c)).

However, after correction, a broad area of the MC region
shows significant TCC at the 95% confidence level and
the area-averaged value also shows significant TCC at the
99% confidence level (Figure 5(b)). The area-averaged
RMSE also decreases from 0.89 to 0.75, and the TCC
increment is large over the western Pacific (Figure 5(d)).
The improvement is clear in the case of OLR, as shown
in Figure 6. The OLR shows statistically significant pre-
diction skill at the 95% confidence level over a broad area
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Figure 5. (a) and (b) are the TCC of hindcasted and corrected precipitation. The dotted area represents the grids where the significance of the TCC
increased above the 99% confidence level after correction. (c) and (d) are the normalized RMSE of hindcasted and corrected precipitation.

in Figure 6(a) as the CGCM predicts OLR better than
precipitation. However, it still shows a low TCC, which is
not significant at the 95% confidence level around Papua
New Guinea. Nevertheless, as shown in Figure 6(b), the
OLR of the overall MC region shows significant TCCs at
the 95% confidence level after correction. According to
the results of Figures 5 and 6, the correction effect is clear
in precipitation. Of total 250, 105 grids become significant
at 99% level of confidence after correction. OLR is also
corrected significantly at 82 grids (Figure 6(b)). As TCC
of OLR is higher than precipitation before correction, it
has relatively less chance to be improved than precip-
itation. That is, while the number of grid improved is
larger in precipitation, number of grid with TCC over 99%
confidence level is larger in OLR. The area-averaged TCC
also increases from 0.45 to 0.53. Figure 6(c) and (d) shows
the RMSE decrease, especially at the central part of the
MC region. The area-averaged RMSE also decreases from
0.81 to 0.77, which shows that the MC region hindcast
error is decreased by the correction.

Figure 7(a) and (c) presents the Taylor diagram (Taylor,
2001) and pattern correlation coefficient (PCC)–RMSE
scatterplot for precipitation, respectively, and Figure 7(b)
and (d) does the same for OLR. The dotted lines in the
Taylor diagrams represent TCCs significant at the 95%
and 99% confidence level, and each dot denotes the
area-averaged value of the MC domain. The black dot
represents the predictability of hindcasted precipitation,
and each of SSLR results with CGCM Nino 3.4I, EMI,
IODMI and SOI and are represented by the different
shapes of dots (open circle, triangle, square and asterisk,

respectively). The ensemble members of E-SSLR are
SSLR results with Nino3.4I, EMI and IODMI, except
SOI. However, we present SOI SSLR results (marked with
asterisk) to compare oceanic and atmospheric indices.
The E-SSLR result is marked with red star. As shown in
Figure 7(a), the hindcasted precipitation is not statistically
significant at the 95% level, but the SSLR results using
Nino 3.4I, EMI and IODMI as predictor have TCC over
the 95% confidence level. However, the correction with
SOI as predictor shows lower performance than that with
Nino 3.4I, although El Nino and Southern Oscillation
are merely different aspects of the same phenomenon.
This is because SOI is less predictable than Nino 3.4I
by CGCM (Table 2). The red star that represents the
E-SSLR shows the highest TCC, over 99% confidence
level. The PCC–RMSE scatterplot of precipitation shows
the trend of increasing PCCs and decreasing RMSEs for
each ensemble members of E-SSLR and E-SSLR, except
for SSLR with SOI (Figure 7(c)). This suggests that the
correction improves the predictability of spatial distribu-
tion of precipitation. Figure 7(b) and (d) is the same as
Figure 7(a) and (c), but for the OLR rather than precipi-
tation. The confidence level of TCC for OLR is improved
from 95 to 99%. In addition, PCC increases and RMSE
decreases more in OLR than in the case of precipitation.

3.2. Deterministic predictions of categories

In this section, the seasonal predictability with regard to
hindcasted and corrected precipitation (and OLR) is eval-
uated using the categorical deterministic forecast. The cat-
egorical deterministic forecast classifies the forecast into

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 35: 3721–3732 (2015)
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Figure 6. (a) and (b) are the TCC of hindcasted and corrected OLR. The dotted area represents the grids where the significance of the TCC increased
above the 99% confidence level after correction. (c) and (d) are the normalized RMSE of hindcasted and corrected OLR.

three categories with respect to climatology: above nor-
mal, normal and below normal. In this study, the threshold
of each category is set to times the standard deviation that
has a population ratio of 3:4:3 with respect to above nor-
mal, normal and below normal categories, assuming that
the probability distribution of precipitation (or OLR) fol-
lows a Gaussian distribution. The categorical deterministic
forecast is generally used for long-term and seasonal pre-
dictions, for which precise prediction of anomaly values is
difficult. In this study, the predictability of the categorical
deterministic forecast is evaluated in terms of hit rate (HR),
false alarm rate (FAR) and Heidke Skill Score (HSS) using
a 3× 3 contingency table (Table 3). The three columns of
Table 3 are category for forecast, and rows are for obser-
vation. The ‘+ ’, ‘−’ and ‘0’ denote anomalies exceeding
+0.53 (above normal), below −0.53 (below normal) and
between –0.53 and 0.53 (normal) of standard deviation.
Therefore, each event can be classified into nine categories.
As an example, if model forecast of DJF precipitation of
a year is above normal and observed precipitation is also
above normal, the year is categorized into category A,
etc. HR, FAR and HSS are calculated using the following
equations (Wilks, 1995).

HR = A + F + K
P

(8)

FAR = (E + I) + (B + J) + (C + G)
(P − D) + (P − H) + (P − L)

(9)

HSS =
(A + F + K) − C1

P − C1
(10)

C1 = 0.3 × (M + O) + 0.4 × N (11)

Figure 8(a), (c) and (e) shows HR, HSS and FAR of DJF
seasonal mean hindcasted precipitation of PNU CGCM,
while Figure 8(b), (d) and (f) shows HR, HSS and FAR
after correction, respectively. With regard to the MC
area-averaged value, HR and HSS increase from 0.45 to
0.51 and from 0.16 to 0.28, while FAR decreases from
0.27 to 0.24, indicating that the correction result of pre-
cipitation using E-SSLR increases the predictability of the
categorical deterministic forecasts. Figure 9, which is the
same as Figure 8, shows HR, HSS and FAR with regard
to seasonal mean OLR before and after correction. While
OLR has higher HR and HSS than those of precipitation
before correction, it is further improved after correction so
that area-averaged HR and HSS increase from 0.48 to 0.59
and from 0.22 to 0.38, while FAR decreases from 0.26
to 0.20. Figure 10 shows a scatterplot with the x-axis of
FAR and the y-axis of HR, in which each point represents
an area-averaged value over the MC region. The legend
in Figure 10 is the same as that in Figure 7. Figure 10(a)
is a scatterplot of precipitation, which shows that the cat-
egorical deterministic forecast ability is improved as the
HR of all ensemble members and E-SSLR increases while
FAR decreases compared with the black point. In the case
of OLR, the correction is also well applied, although the
HR increment and FAR decrement are lower than that
of the precipitation (Figure 10(b)). The correction effect
of E-SSLR is analysed via deterministic analysis and
categorical deterministic analysis, and the result shows
that the seasonal predictability is increased by E-SSLR
with regard to DJF seasonal precipitation and OLR in the
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Figure 7. Taylor diagram of (a) precipitation and (b) OLR, and PCC-RMSE scatterplot of (c) precipitation and (d) OLR.

Table 3. Contingency table (3× 3) for categorical forecast.

FCST and OBS + 0 − Total

+ A B C D
0 E F G H
− I J K L
Total M N O P

FCST and OBS indicate the forecast and observation categorized, respec-
tively, as above normal (+), normal (0) and below normal (−).

MC region. Furthermore, the effect of correction is larger
when indices with high predictability closely correlated
with predictand are used as predictors.

4. Summary and conclusion

Many systematic bias occur in the MC region of the
CGCM, especially for precipitation. This study proposes a
statistical correction method to increase the predictability
of DJF seasonal precipitation and OLR in the MC region

simulated by PNU CGCM. The precipitation in the MC
region is corrected using indices derived from the indices
of ENSO, El Nino Modoki and IOD phenomena, which
are simulated relatively well by the dynamical model and
also show high correlation with precipitation in the MC
region. The indices are produced from the hindcast SST of
the model to enable application of this method to seasonal
forecasts. In addition, SOI, which is produced using the
hindcasted MSLP, is also used as a predictor to determine
the effect of the accuracy of the model indices on the cor-
rection. The designed correction method is E-SSLR, which
is a modification of SLR, the simplest and most widely
used linear regression method. E-SSLR consists of three
steps: selection, SLR and ensemble. The SLR step is the
same as the commonly used SLR, while the other two steps
are added to overcome the weakness of the linear regres-
sion method. Through the selection step, SLR is selectively
applied only for selected grids which have high correlation
coefficients between precipitation (or OLR) and predictor
index. This procedure prevents insignificant statistical
correction due to application of low correlated predictors
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Figure 8. The HR, HSS and FAR of precipitation: (a), (b), (c) for hindcasted and (d), (e), (f) for corrected precipitation.

to the SLR. In addition, all steps apply cross-validation
to avoid the over-fitting problem. In previous studies, the
prediction results of the CGCM were corrected by produc-
ing indices of the arbitrary pattern capable of explaining
the largest variances using principal component analysis
or creating indices using an area-averaged value in regions
that have a high correlation with the correction target
statistically (Feddersen et al., 1999; Kang et al., 2004).
However, although the predictors selected in the previous
methods may be statistically reasonable, they cannot
explain the relationship between predictor and predictand
physically. In contrast, E-SSLR has the advantage of easily
interpreting the result because the physical and dynam-
ical relationships between predictor and predictand are
clear.

The predictability of DJF precipitation and OLR of
the MC region in PNU CGCM, which is corrected via
E-SSLR, is evaluated in this study. First, the predictability
of DJF precipitation and OLR, which is corrected via
the selection and SLR steps with each index (SSLR), is
increased except when SOI is used as a predictor, com-
pared with the hindcasted precipitation and OLR. In the

case of SOI, the SSLR result shows lower predictability
than the Nino 3.4I case, even though ENSO considerably
influences the precipitation in the MC region. This is
because the correction using indices poorly simulated by
CGCM cannot reflect the relationship between the index
and predictand sufficiently. In other words, the effect of
correction is dependent on the accuracy of the indices
simulated by the model. In addition, when Nino 3.4I and
EMI are used as predictor, the seasonal predictability
of precipitation and OLR in the MC region is markedly
increased. In the case of Nino 3.4I, the correlation between
the precipitation and OLR in the MC region is the highest,
and TCC between the index predicted by the model and
the observed index ranged from 0.89 to 0.96, which is
higher than that of the other indices. Similarly, the CGCM
predicts EMI better than other indices except for Nino
3.4I and is highly correlated with MC region precipi-
tation and OLR. This leads the dominant improvement
of predictability of precipitation and OLR in the region
where EMI and variables have high TCC value. This
indicates that effect of correction will be increased when
the predictor is more influential to the target variable
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Figure 9. The HR, HSS and FAR of OLR: (a), (b), (c) for hindcasted and (d), (e), (f) for corrected OLR

Figure 10. FAR-HR scatterplot of (a) precipitation and (b) OLR.
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and more predictable by the model. After SSLR, we
reduce the uncertainty of the prediction by performing
ensemble (E-SSLR) of the SSLR result, which reflect
the influence of each index and improve the seasonal
predictability of DJF precipitation and OLR in the MC
region.
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