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and first-flowering date over South Korea
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ABSTRACT: The forecast capability of the first-flowering date (FFD) over South Korea is evaluated using the seasonal (1- to
3-month lead) prediction from the global [Pusan National University (PNU) coupled general circulation model (CGCM) v1.1]
and regional [Weather Research and Forecast (WRF) v3.0] climate models. Gridded data with high spatial (3 km) and temporal
(daily) resolution are produced using the physically based dynamical models. Dynamical downscaling is performed using WRF
v3.0 with the lateral forcing from hourly outputs of PNU CGCM v1.1. Statistical correction is then used to eliminate systematic
bias in the model output. The FFDs of cherry, peach and pear in South Korea are predicted for the decade of 1999–2008 by
applying the corrected daily temperature predictions to the phenological thermal-time model. The WRF v3.0 results reflect
the detailed topographical effect, despite having cold and warm biases for warm and cold seasons, respectively. After applying
the correction, the mean temperature for early spring (February to April) clearly represents the general pattern of observation,
while preserving the advantages of dynamical downscaling. The FFD predictabilities for the three species of trees are evaluated
in terms of qualitative, quantitative and categorical estimations. Although FFDs derived from the corrected WRF results well
predicted the spatial distribution and the variation of observation, the prediction performance has no statistical significance or
appropriate predictability. Even though the upcoming flowering phenology could not be accurately predicted, the present study
approach may be helpful in obtaining detailed and useful information about FFD and regional temperature by accounting for
physically based atmospheric dynamics.
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1. Introduction

Flowering time closely affects tourism through festivals
(Chung et al., 2009, 2011) and agricultural productivity
due to spring frost damage, pollination and fruit setting
(Cannell and Smith, 1986; Guedon and Legave, 2008).
Therefore, flowering date prediction is economically
important for growers and relevant decision-makers
because it can help risk management and decision making
and thus maximize potential benefits (Schwartz et al.,
1997).

Phenological models have been developed to predict
flowering date by accounting for the thermal-time concept
since the time of Réaumur (1735) (Linkosalo et al., 2006).
Substantial research (e.g. Chung et al., 2009; Hur and Ahn,
2014; Hur et al., 2014) has demonstrated that phenological
models based on high-temperature requirement can suc-
cessfully predict flowering time in deciduous tree species.
Thus, reliable temperature prediction can facilitate skillful
forecasting of flowering date.

Much of the effort in developing the general circulation
model (GCM) has been devoted to providing long-term
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weather and climate information with sufficient accuracy.
However, despite the successful development of GCM
over the last several decades, it remains incapable of
obtaining station-based or high-resolution data due to its
coarse-resolution grid system (Ahn et al., 2012; Kang
et al., 2014). Thus, dynamical downscaling based on a
regional climate model (RCM) has been used in conjunc-
tion with GCM, thereby offering long-term gridded data
with high resolution.

Although a few studies (e.g. Chung et al., 2009; Avolio
et al., 2012) have projected gridded temperature and flow-
ering phenology using both GCM and dynamical down-
scaling, most of these focused on the future change of
flowering phenology in association with global warming.
Although the prediction of upcoming flowering phenol-
ogy is essential and useful in many respects, insufficient
research has been conducted on seasonal prediction in
flowering date.

The objective of this study is to explore the prediction
possibility of flowering date by applying seasonal temper-
ature prediction with high resolution to the phonological
thermal-time model. The two specific study aims are: (1) to
obtain seasonal (1- to 3-month lead) temperature hindcasts
on a daily basis with fine-scale grid spacing (3 km) using
both GCM and dynamical downscaling over South Korea
and (2) to predict the first-flowering dates (FFD) of three
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deciduous trees (cherry, peach and pear) in South Korea
during 1999–2008 by applying daily temperature hind-
casts to the phenological model on a thermal-time basis.

2. Data and methods

2.1. Seasonal temperature prediction

In order to obtain the long-term temperature prediction
with high-resolution grid spacing in South Korea, dynami-
cal downscaling is performed using the Weather Research
and Forecast (WRF) Model v3.0 developed by the National
Center for Atmospheric Research (NCAR) (Skamarock
et al., 2008). The initial and boundary conditions for WRF
are derived from hourly output of the Pusan National Uni-
versity coupled GCM (PNU CGCM) v1.1, a participant
model of the Asia-Pacific Economic Cooperation (APEC)
Climate Center (APCC) multi-model ensemble (MME)
prediction system (Sun and Ahn, 2011, 2014).

2.1.1. Global climate model (PNU CGCM v1.1)

The global climate model used for long-range pre-
diction is PNU CGCM v1.1, a fully coupled ocean–
atmosphere-land-sea-ice model. The model consists of
the 18-level National Center for Atmospheric Research
Community Climate Model (CCM3, T42), the 29-level
Geophysical Fluid Dynamics Laboratory Modular Ocean
Model (MOM3), and the Los Alamos National Labora-
tory elastic viscous plastic sea-ice model (Sun and Ahn,
2011). Atmospheric and land variables have a horizontal
resolution of 2.8125∘, whereas oceanic variables have
a variable grid in latitude with finer resolution at the
equatorial region, i.e. 0.7∘ at lower latitudes below 30∘,
1.4∘ at mid-latitude between 30∘–60∘ and 2.8∘ at higher
latitudes above 60∘. The model is described in more
detail by Sun and Ahn (2011, 2014). PNU CGCM v1.1 is
adopted because it is used by the APCC MME long-range
prediction system and has already been used successfully
in the earlier studies (e.g. Sun and Ahn, 2011, 2014; Kim
and Ahn, 2012; Ahn and Kim, 2014; Kang et al., 2014),
as a forcing for RCM.

Hourly outputs of PNU CGCM v1.1 are used for the
decade from 1999 to 2008. The initial and boundary con-
ditions of WRF v3.0 for this decade are made using atmo-
spheric and land variables from PNU CGCM v1.1 such
as vertical and horizontal wind components, temperatures,
relative humidities, soil moistures and soil temperatures.

2.1.2. Regional climate model (WRF v3.0)

Dynamical downscaling is performed using WRF v3.0
RCM with the lateral forcing from hourly outputs of PNU
CGCM v1.1. RCM is a fully compressible non-hydrostatic
model with an Arakawa-C grid system (Hong and Lee,
2009). The model configuration consists of two-way
interactive triple-nested domains with 3 km-, 9 km- and
27 km-resolution centering on South Korea. A two-way
nesting is used in the study by considering its better
performance compared to one-way option, which allows

for interactions between outer and inner domains (Moeng
et al., 2007; Harris and Durran, 2010). Each domain
has 28 vertical levels from the surface up to 50 hPa.
A 3-day spin-up period is adopted by considering the
time required for the dynamical adjustment between
lateral forcing and the internal physical dynamics of the
model (Ahn et al., 2012). For the model physics schemes,
we selected WRF Single-Moment 6-class (Hong and
Lim, 2006), Kain–Fritsch (Kain and Fritsch, 1993) and
Yonsei-University (Hong and Dudhia, 2004) for micro-
physics, cumulus and planetary boundary processes,
respectively. More detailed configuration for WRF v3.0
is presented in Ahn et al. (2012), although their system is
for reproduction rather than prediction.

The integrations span the decade corresponding to the
period of the lateral forcing’s existence. The analysis is
only focused on the daily surface air temperature with
3-km grid spacing derived from the third inner domain over
South Korea (124.34∘–130.30∘E, 33.845∘–38.652∘N).

2.1.3. Bias correction

Although the prediction system is well constructed using
the refined climate models, the model cannot predict accu-
rately due to many uncertainties from initial and bound-
ary conditions, the model physics and parameterizations.
The application of a statistical correction technique to the
model results can help to reduce these problems. In this
study, the simple statistical correction method is adopted
to minimize the systematic biases in the RCM output.

Systematic bias is defined as the mean state difference
between the prediction and observation. Therefore, only
the mean state of the model is corrected under its anomaly
preservation (Ahn et al., 2012). Our correction method is
comprised of the following three steps. In the first step, we
divide the prediction P(k, t) and the observation O(k, t) at
grid point k and in time t into the mean part (P (k), O (k))
and the perturbation (anomaly) part (P(k, t)

′
, O(k, t)

′
) using

the perturbation method.

P (k, t) = P (k) + P (k, t)′ , (1)

O (k, t) = O (k) + O (k, t)′ . (2)

In the second step, the difference (Bias(k)) in the mean
parts between prediction and observation is calculated and
termed a bias. The bias is estimated using leave-one-out
cross-validation.

Bias (k) = P (k) − O (k) (3)

Then, the bias at each grid point is area-averaged within
the diameter, 12.7 km, which is the mean distance of the
observation stations, to eliminate the noise induced by the
interpolation.

Biasmave (k) =
Rn∑

n=1

Bias (n) ∕Rn, (4)

where Rn is the number of grid points within the diameter
(12.7 km) at the center, grid point k.
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Table 1. Three parameters for the DTS model that are determined
to be the most suitable values by root mean square errors (RMSE)

analysis.

Cherry Peach Pear

Ds (JD) 37 34 44
Ea (KJ mol−1) 60 72 64
DTS (days) 122.1 162.7 145.8

In the third step, finally, the statistically corrected predic-
tion (Pc(k, t)) is produced by subtracting the area-averaged
bias (Biasmave(k)).

Pc (k, t) =
(

P (k) − Biasmave (k)
)
+ P (k, t)′ (5)

Hereafter, the prediction without correction will be
referred to as U_WRF, and the corrected prediction as
C_WRF.

2.2. Flowering date prediction

The FFDs of three deciduous trees (cherry, peach and pear)
in South Korea are predicted using the number of days
transformed to standard temperature (DTS) model, which
is a kind of thermal-time phenological model (Ono and
Konno, 1999). The DTS model is selected in this study
because of its good performance in estimating the three
FFDs in South Korea (Hur and Ahn, 2014; Hur et al.,
2014). Mathematically, DTS is based on the sum of the
exponential function of the daily average temperature (Hur
and Ahn, 2014).

nday∑
t=1

(daily DTS)tk =
nday∑
t=1

(
exp

(
Ea

(
Ttk − Ts

)
∕R · Ttk · Ts

))

(6)
where Ttk is the daily average surface air temperature,
and daily DTStk is the daily DTS accumulation at the grid
point k on the tth day since the starting day of calcula-
tion (Ds). Ts, R and Ea indicate the standard temperature
(271.4 K), the universal gas constant (8.314J K−1 mol−1)
and the sensitivity of plants to temperature, respectively.
For the DTS model, the three parameters are optimized
for each species of trees: (1) Ds (Julian Day, JD); (2) Ea,
the temperature sensitivity rate (KJmol−1); and (3) DTS,
the accumulated daily DTS from Ds to FFD (days) (Ono
and Konno, 1999; Aono and Kazui, 2008; Aono and Saito,
2010; Hur and Ahn, 2014; Hur et al., 2014). As in Hur
and Ahn (2014), the FFDs are estimated with 120 combi-
nations [12 (the number of Ds)× 10 (the number of Ea)],
and then the best combination with the lowest root mean
square error (RMSE) between the observed and estimated
FFDs is determined (Table 1). This approach enables dif-
ferent parameters to be obtained according to the kind of
tree. More detailed explanation on the parameterization is
presented in Hur and Ahn (2014).

After construction of the phenological model, the daily
temperature predicted by the climate model is applied
to the DTS model. Then, the predictability of FFD is
evaluated by comparison with in situ observation.

Figure 1. Locations of 72 ASOS (red squares) and 352 AWS (red tri-
angles) for temperature and 50 stations (red squares with blue cross)

observing the FFDs of cherry, peach and pear in South Korea.

2.3. Meteorological and phenological observation data

The daily average surface air temperatures observed at
72 automated surface observation systems (ASOS) and
352 automatic weather stations (AWS) for the decade of
1999–2008 are obtained from the Korean Meteorological
Administration (KMA) to evaluate the temperature pre-
dictability and to estimate systematic bias in the model.
To investigate the accuracy of the FFD prediction, the FFD
observations from 50 observation sites over the same study
period for cherry, peach and pear are used. The day of FFD
is defined as when more than 20% of each tree’s buds are
in full bloom. Figure 1 shows the location of the 72 ASOS
and 352 AWS for surface air temperature and 50 stations
for FFDs.

For comparison with the gridded temperature predic-
tion, in situ observations are interpolated into the grid
system (3 km) of the third-inner domain of RCM. For
interpolation, Cressman objective analysis (Cressman,
1959) is used by setting the effective radii as 15 and 30 km
for ASOS and 6 and 12 km for ASOS+AWS. These
radii are selected by considering the average distance
between the observation sites. Hereafter, ASOS, AWS and
ASOS+AWS interpolated onto the C_WRF grid system
(3 km) will be referred to as gridded ASOS, gridded AWS
and gridded ASOS+AWS, respectively.

3. Results and discussions

3.1. Predictability of the daily surface air temperature

Several studies have already investigated the relationship
between surface air temperature and the FFDs of these
three species of trees in South Korea (Jeong et al., 2011;
Hur and Ahn, 2014). They found a strong correlation
between the temperature of early spring [3 months from
February to April (FMA)] and the three FFDs in South
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Figure 2. Distribution of surface air temperature over South Korea for early spring (FMA) averaged over the decade (1999–2008) derived from (a)
ASOS, (b) AWS, (c) ASOS+AWS, (d) U_WRF and (e) C_WRF.

Korea. Therefore, this article investigates the predictability
of early spring temperature.

First, the spatial distribution of surface air temperature
for early spring (FMA) is investigated. Figure 2 shows the
spatial distribution of the temperature averaged over the
decade (1999–2008) derived from the gridded ASOS, the
gridded AWS, the gridded ASOS+AWS, U_WRF and
C_WRF for early spring. The temperature derived from
ASOS on average is 6.3 ∘C, which reflects the topographic
effect roughly. The temperature in AWS and ASOS+AWS
is 6.0 ∘C, which follows the general spatial patterns and
characteristics of ASOS. By comparison with ASOS, how-
ever, AWS and ASOS+AWS reflect a physiographical
feature in more detail because of the greater number of
AWS (352) compared to that of ASOS (72). In other
words, the greater number of station sites reduces the aver-
age distance between observation sites, thereby increasing
the precision of the distribution. Although the network in
South Korea is sufficiently dense, the average distance of
12.7 km between ASOS+AWS sites remains insufficient
to represent the detailed geographical features of South
Korea, especially in the northeastern region due to its vari-
ant topography and fewer sites.

On the contrary, U_WRF with a grid spacing of
3 km generates a more detailed temperature distribu-
tion throughout South Korea, including the northeastern
region. However, U_WRF underestimates the temperature
for early spring due to a systematic bias. Qualitatively,

the temperature distribution of C_WRF reveals a greater
similarity to the observation pattern than that of U_WRF,
while maintaining the detailed topographical effect of
RCM. That is, the systematic biases in the RCM results
are significantly reduced by statistical correction, thereby
affording more accurate prediction results. Quantitatively,
the mean temperature of 4.2 ∘C in U_WRF is increased
to 6.0 ∘C after statistical correction in C_WRF. That is,
the trend toward underestimation in RCM output has been
corrected, so that the prediction approaches closer to the
observation (6.0 ∘C in ASOS+AWS). The pattern cor-
relation coefficient between C_WRF and ASOS+AWS
is also increased by about 0.14–0.93 in comparison with
U_WRF (0.79).

The daily variabilities of observation and prediction
are analyzed. Figure 3 displays the time series of daily
mean temperatures averaged over the decade derived from
ASOS, ASOS+AWS, U_WRF and C_WRF. Here, for
the comparison with observation, U_WRF and C_WRF
are interpolated onto in situ ASOS+AWS sites. In ASOS
and ASOS+AWS, the highest and lowest temperatures
appear in the summer (JJA) and winter (DJF) seasons,
respectively. Overall, U_WRF shows some discrepancies
with observation due to systematic biases, despite its good
prediction of the general temporal pattern of observation.
As in the case of Ahn et al. (2012), temperature was
underestimated in the warm season and overestimated in
the cold season. In C_WRF, the general fluctuation of

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 35: 4791–4801 (2015)
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Figure 3. Daily mean temperature averaged over the decade
(1999–2008) derived from ASOS (black solid line), ASOS+AWS (red
dash line), U_WRF (blue dash-dot line) and C_WRF (green dot-dot
line) interpolated onto the 424 station sites in South Korea. The 10-day

moving average is applied.

observation value is well captured, as is the daily mean
temperature, by correcting the cold and warm biases of
U_WRF. The annual mean temperature of C_WRF is
12.8 ∘C, which is 0.8 ∘C higher than the 12.0 ∘C of U_WRF
and 0.1 ∘C lower than the 12.9 ∘C of ASOS+AWS, which
is the value closest to observation. It is interesting to
note the relatively large discrepancy between C_WRF and
observation in February and March. It is probably because
the correction method used in the study can be applied only
to the mean field of model outputs and the daily fluctuation
during the period is relatively large as compared to the
other months. Thus, in spite that the monthly mean field
of C_WRF is in good agreement with observation, daily
variations of the temperature are not well produced due
to the larger fluctuation in U_WRF for the period. The
prediction skill of FFDs may be somewhat mediated by
the discrepancy.

We investigated the characteristics and predictabilities of
surface air temperature in mountainous complex terrain by
focusing on the northeast region (Gangwon-do) of South
Korea. Figure 4 displays the spatial distribution of sur-
face air temperature (shaded) derived from gridded ASOS,
gridded ASOS+AWS and C_WRF over Gangwon-do for
early spring. To examine the influence of topography on
temperature, topography (contoured) and station sites were
overlaid on the temperature distribution. In ASOS and
ASOS+AWS, the temperatures are higher at low altitude
and in flatlands than at high altitude. However, low temper-
ature does not clearly appear along the mountain ridges.
Observation stations, especially ASOS, are located in
low-lying areas for ease of maintenance and power supply
(Ahn et al., 2012). Therefore, the map derived solely from
ASOS distorts the realistic temperature distribution in
mountainous areas. Although gridded ASOS+AWS con-
siders more stations than ASOS, it remains insufficient to
represent the temperature characteristics on the mountain

ridges. In comparison, C_WRF effectively expresses both
the detailed topographical effect and the overall pattern of
gridded ASOS+AWS.

The altitude dependency of surface air temperature is
also investigated using the temperature field in Figure 4.
We focus on the Gangwon-do region as in the case of
Ahn et al. (2012) in order to avoid latitudinal temper-
ature differences and focus on the temperature change
with altitude. Figure 5 presents scatterplots of alti-
tudes against temperature over the mountainous area of
Gangwon-do. The temperatures averaged over the decade
are derived from in-situ OBS (ASOS+AWS), gridded
OBS (ASOS+AWS) and C_WRF over Gangwon-do.
In Figure 5, temperatures observed at 77 sites are used
for in situ OBS, whereas those at 4408 grid points are
used for gridded OBS and C_WRF over Gangwon-do.
Temperature is strongly dependent on altitude in the
in situ OBS. The surface air temperatures in gridded
OBS and C_WRF also decrease with increasing altitude.
Gridded OBS and C_WRF have the advantage of gaining
information on a series of temperatures at altitude higher
than 900 m. However, the distribution of gridded OBS
presents a widely scattered pattern with a dull edge,
because the interpolation method (Cressman method)
only considers the distance and most of the observation
stations are in lower sites. On the contrary, the distribution
of C_WRF is well organized as a function of altitude with
a rather sharp edge, which indicates that the topographical
effect is properly reflected in C_WRF. Therefore, climate
models in conjunction with statistical correction method
can properly predict the altitude dependency of temper-
ature appearing in observation by reflecting the detailed
topographic effect.

3.2. Predictability of the FFD

In the previous section, we investigated the accuracy of
the temperature prediction produced by climate models
and bias correction. In this section, we evaluated the pre-
dictability of FFDs using the daily temperature prediction
validated in the previous section. Although we investigated
the analysis results for the three species of trees of cherry,
peach and pear, we present these results simultaneously to
avoid duplication.

First, the temporal change in accumulated DTS is
explored. Figure 6 shows the change of accumulated DTS
derived from observation and C_WRF, in associated with
daily temperature (see Section 2.2). For the comparison,
C_WRF is interpolated onto the 50 FFD observation
sites in South Korea. The daily DTS is accumulated from
each Ds until the DTS requirement (DTS in Table 1) is
satisfied for each species of trees. If

∑
daily DTS≥DTS,

FFD occurs and the accumulation of daily DTS stops. In
observation, the DTS accumulation grows linearly until
early- or mid-April. Overall, C_WRF clearly predicts the
variation of observation despite some discrepancy; i.e. the
floral development is reasonably predicted on a daily basis.

Prior to the quantitative analysis, qualitative analysis is
performed by investigating the distribution of the three

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 35: 4791–4801 (2015)
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Figure 4. Topography (contoured, m) and distribution of surface air temperature (shaded, ∘C) over the Gangwon-do mountainous region in South
Korea for early spring (FMA) averaged over the decade (1999–2008) derived from (a) ASOS, (b) ASOS+AWS and (c) C_WRF. Red dot and blue

triangle denote the locations of ASOS and AWS sites, respectively.

FFDs in South Korea. Figures 7–9 show the spatial dis-
tributions for the 10-year (1999–2008) averaged FFDs
derived from in situ observation, gridded observation and
C_WRF for cherry, peach and pear, respectively. The aver-
age FFDs observed at in situ stations are JD 93.2, 96.8
100.3 for cherry, peach and pear, respectively, i.e. the trees
flower in the order of cherry, peach and pear, on aver-
age. In the in situ observation, the station sites located
in low latitude and flat areas have relatively earlier FFD
than those in high latitude and mountainous regions due
to their low temperatures. This spatial structure of obser-
vation appears for all three species of trees. There is no
remarkable difference in the spatial distribution among
the three species of trees. The gridded observation main-
tains the general characteristics of in situ observation with
the average of JD 94.8, 98.4 and 101.7 for cherry, peach
and pear, respectively. However, the gridded observation
distribution shows very coarse values and cannot express
landforms properly because of the paucity of stations in
the mountain regions. C_WRF expresses the topograph-
ical effect in detail, while maintaining the overall obser-
vation pattern. C_WRF has an average of JD 98.4, 101.7
and 105.5 for cherry, peach and pear, respectively, in South
Korea. Thus, cherry is predicted to flower about 3.3 and
7.1 days faster than peach and pear, respectively, which
are similar values with those in in situ and gridded obser-
vations. It is also interesting to note that average FFDs
observed at the in situ stations are about 1.5 and 5 days
faster than those derived from the gridded observation and
C_WRF, respectively. It can be attributed to the discrep-
ancy in mean altitude between the in situ observation site
and the model’s grid point. In detail, the third inner domain
of WRF has an average height of 215.3 m, which is three
times higher than the mean altitude of the observation sites
(74.7 m).

The distribution of FFDs according to altitude is also
examined. Figure 10 displays the scatterplots of the
altitude of 50 stations against FFDs derived from the
in situ observation and C_WRF. For comparison with

in situ observation, C_WRF is interpolated onto the 50 in
situ observation sites in South Korea. The regression lines
for observation and C_WRF are illustrated in Figure 10. In
the observation, FFD is delayed with increasing elevation
of the observation site. The FFD delay rate with elevation
is 4.3, 4.9 and 3.9 days/100 m for cherry, peach and pear,
respectively. Peach shows the regression line with the
steepest slope, followed in order by cherry and pear. It
indicates that peach has more sensitivity to altitude than
cherry and pear. The altitude dependency of FFD shown in
the observation also appears in C_WRF. However, FFDs
derived from C_WRF are generally earlier than those
of observation at high elevation. This is attributed to the
temperature lapse rate in observation being steeper than
that in C_WRF (see Figure 5). The FFD discrepancies
between the observation and C_WRF at high altitude
are relatively larger in peach than those in the other two
trees. In other words, C_WRF better simulated the altitude
dependency of FFD in cherry and pear cases.

Finally, the FFD performance is evaluated based on
both quantitative and categorical estimations such as
temporal correlation coefficient (TCC), RMSE and hit
rate (HR). Prior to evaluation, C_WRF is interpolated
onto the 50 in situ observation sites in South Korea for
comparison. Hence, all calculations are performed at
each station, and then averaged over 50 FFD stations.
Categorical estimation (i.e. HR) is performed using three
categories based on 0.53× standard deviation (𝜎) for
each species of trees: below normal (<− 0.53 𝜎), normal
(≥− 0.53 𝜎 and ≤ 0.53 𝜎) and above normal (>+ 0.53 𝜎).
The three categories (below normal, normal above normal)
indicate that approximately 30, 40 and 30% of the total
events occur, respectively. Table 2 shows the average,
standard deviation and the skill scores of the three FFDs..
Average FFDs derived from C_WRF are similar to those
of the observation within a narrow margin of 2 days. The
standard deviations of predicted FFDs range from 3.48
to 3.87 days, whereas those of observations are more

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 35: 4791–4801 (2015)
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Figure 5. Scatterplots of altitude against temperature and its regres-
sion line (blue dashed line) over the Gangwon-do mountainous region
in South Korea for early spring (FMA), averaged over the decade
(1999–2008) derived from (a) in situ ASOS+AWS, (b) gridded
ASOS+AWS interpolated onto C_WRF grid system and (c) C_WRF.
Here, the distributions of in situ ASOS+AWS (black cross) and its
regression line (black solid line) are illustrated in all panels for reference.

Figure 6. Accumulated DTS change over time for cherry, peach and pear
trees. The data are averaged over the decade (1999–2008) derived from
the 50 FFD stations (black solid line) and C_WRF (red dashed line)

interpolated onto the 50 station sites in South Korea.

than 4.1 days, implying that the DTS model systemati-
cally underestimates the temporal variations of FFDs. In
terms of RMSE, C_WRF can predict FFDs for the three
species of trees with a discrepancy of about 5 days with
observation. TCC ranged from 0.29 to 0.36, which is not
statistically significant. HR is about 0.40 (+0.05% as a
range), i.e. 40% of the cases are correctly predicted by the
model. Although FFDs are well predicted using the com-
bination of C_WRF and DTS model from the qualitative
standpoint, this methodology has limited performance in
terms of quantitative and categorical evaluations.

To further investigate this limitation of FFD predictabil-
ity, an additional experiment is conducted using observed
temperature. First, FFDs are newly estimated by applying
observed temperature to DTS phenological model. Then,
their performances are evaluated as in the case of Table 2.
Table 3 shows the skill of the DTS phenological model
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Figure 7. Spatial distribution of cherry FFD derived from (a) in situ observation, (b) gridded observation and (c) C_WRF averaged for the decade
(1999–2008). Unit is Julian day.

Figure 8. Spatial distribution of peach FFD (a) in situ observation, (b) gridded observation and (c) C_WRF averaged for the decade (1999–2008).
Unit is Julian day.

Figure 9. Spatial distribution of pear FFD (a) in situ observation, (b) gridded observation and (c) C_WRF averaged for the decade (1999–2008).
Unit is Julian day.
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Figure 10. Scatterplots of the altitude of 50 stations against (a) cherry,
(b) peach and (c) pear first-flowering date (FFD) derived from the
observation (black cross) and C_WRF (blue circle) interpolated onto
the in situ observation sites in South Korea. The black solid and blue
dashed lines denote regression lines for the observation and C_WRF,

respectively.

by assuming that the observed temperature is perfect input
data. In Table 3, the RMSEs are lower than 3.35 days, indi-
cating that the DTS model can estimate the FFDs of cherry,
peach and pear in South Korea with a difference of about 3
days from observation. The TCCs are 0.82, 0.74 and 0.73
for cherry, peach and pear, respectively, which is statis-
tically significant at the 95% confidence level. The DTS
model also exhibits good performance in terms of categor-
ical estimation. Although the DTS phenological model has
the lower temporal variations, it can provide FFD informa-
tion with high accuracy under the condition of perfect input
data. Therefore, the limitation of FFD predictability can
be attributed mainly to the low temperature accuracy, i.e.
imperfect input data, rather the phenological thermal-time
model. In other words, the limitation of C_WRF seems to
reduce the predictability of the FFDs for cherry, peach and
pear in South Korea.

4. Conclusion and summary

In this study, the capability of forecasting FFD over South
Korea is evaluated using the seasonal (1- to 3-month lead)
prediction with high-resolution grid spacing (3 km) on
a daily basis. For the study, global-scale gridded mete-
orological variables for the decade of 1999–2008 are
produced using the PNU CGCM v1.1 seasonal prediction
system on an hourly basis. Then, dynamical downscaling
is performed using WRF v3.0 RCM with lateral forcing
from the hourly outputs of PNU CGCM v1.1. The RCM
outputs are statistically corrected to reduce systematic
biases, thereby affording reliable prediction of surface
air temperature. The FFDs of cherry, peach and pear in
South Korea are predicted for the decade of 1999–2008
by applying these daily temperatures to the DTS
phenological model.

The results from RCM (U_WRF) clearly reflect the
detailed topographical effect. However, due to systematic
biases, the temperature prediction is underestimated dur-
ing early spring. After correction is applied, the mean
temperature for early spring equates to that (6.0 ∘C)
of the observation, while maintaining the advantage of
dynamical downscaling. Overall, the corrected predic-
tion (C_WRF) clearly represents the general pattern of
observation as well as landform. Therefore, reliable and
detailed information on daily temperature can be obtained
using climate models and the statistical correction method.

The predictability of FFD is evaluated for each species
of trees using various estimations. Qualitatively, FFDs
derived from C_WRF well predict the spatial distribution
and its variation in the observation. However, in quanti-
tative and categorical estimations, the prediction perfor-
mance has no statistical significance or great predictability.
In an additional experiment, we find that the limitation
of FFD predictability can be mainly attributed to the low
accuracy of the input data. In other words, C_WRF can-
not predict the FFDs with great accuracy, even though the
climate model well simulates the general characteristics

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 35: 4791–4801 (2015)
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Table 2. Average (Ave), standard deviation (Std) and skill scores of FFD prediction interpolated onto the 50 in situ observation station
sites.

Prediction
Ave/Observation

Ave (JD)

Prediction
Std/observation

Std (Day)

Root mean
square error (Day)

Temporal
correlation coefficient

Hit rate

Cherry 94.32/93.18 3.87/4.14 4.15 0.36 0.43
Peach 97.05/96.76 4.16/4.81 5.34 0.29 0.40
Pear 101.37/100.28 3.48/4.62 4.61 0.30 0.45

*95% confidence level (±0.63)

Table 3. Average (Ave), standard deviation (Std) and skill scores of FFD derived from temperatures observed at the 50 stations.

Estimation
Ave/observation

Ave (JD)

Estimation
Std/observation

Std (Day)

Root mean
square error (Day)

Temporal
correlation
coefficient

Hit rate

Cherry 94.48/93.18 2.99/4.14 2.67 0.82* 0.72
Peach 97.77/96.76 3.34/4.81 3.35 0.74* 0.64
Pear 101.60/100.28 2.76/4.62 3.28 0.73* 0.64

*95% confidence level (±0.63)

in observation. To increase the reliability of seasonal pre-
diction, both climate and phenological models need to be
improved.

The methodology used in the study can be applied to
other locations. The DTS phenological model has already
been used for analysis by some researchers and received
favorable evaluations. This methodology, therefore, offers
the advantage of being applicable to various locations and
plants. Even though the upcoming flowering phenology
could not be accurately predicted, the proposed approach
may be helpful in obtaining detailed and useful infor-
mation about FFD and regional temperature. Despite the
importance of seasonal prediction, few studies have been
performed to predict FFD by taking into account physi-
cally based atmospheric dynamics. Therefore, we believe
that this approach will help in generating physically based
gridded data for various plants over diverse regions with
high spatial (less than 3 km) and temporal (less than daily)
resolutions.
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